Я не хотел бы кончить эту главу, не сказав, что эргодическая теория — гораздо более обширный предмет, нежели здесь изложено. В некоторых новейших направлениях эргодической теории мера, остающаяся инвариантной при группе преобразований, определяется непосредственно самой группой, а не задается заранее. [c.117] В особенности я должен упомянуть работы Крылова и Боголюбова и некоторые работы Гуревича и японской школы.
Следующая глава посвящена статистической механике временных рядов. В этой области условия также очень далеки от условий, принимаемых статистической механикой для тепловых двигателей, и поэтому они весьма хорошо могут служить моделью того, что происходит в живых организмах. [c.118]
Глава III. Временные ряды, информация и связь
Существует широкий класс явлений, в которых объектом наблюдения служит какая-либо числовая величина или последовательность числовых величин, распределенные во времени. Температура, непрерывно записываемая самопишущим термометром; курс акций на бирже в конце каждого дня; сводка метеорологических данных, ежедневно публикуемая бюро погоды, — все это временные ряды, непрерывные или дискретные, одномерные или многомерные. Эти временные ряды меняются сравнительно медленно, и их вполне можно обрабатывать посредством вычислений вручную или при помощи обыкновенных вычислительных приборов, таких, как счетные линейки и арифмометры. Их изучение относится к обычным разделам статистической науки.
Но не все отдают себе отчет в том, что быстро меняющиеся последовательности напряжений в телефонной линии, телевизионной схеме или радиолокаторе точно так же относятся к области статистики и временных рядов, хотя приборы, которые их комбинируют и преобразуют, должны, вообще говоря, обладать большим быстродействием и, более того, должны выдавать результаты
Все эти временные ряды и все устройства, работающие с ними, будь то в вычислительном бюро или в телефонной схеме, связаны с записью, хранением, передачей и использованием информации. Что же представляет собой эта информация и как она измеряется? Одной из простейших, наиболее элементарных форм информации является запись выбора между двумя равновероятными простыми альтернативами, например между гербом и решеткой при бросании монеты. Мы будем называть
(3.01)
Мы видим, что число сделанных выборов и вытекающее отсюда количество информации бесконечны.
Однако в действительности никакое измерение не производится совершенно точно. Если измерение имеет равномерно распределенную ошибку, лежащую в интервале длины 0,
(3.02)
[c.120]
и это выражение мы примем за точную формулу количества информации и за его определение.
Это выражение можно понимать следующим образом: мы знаем
(3.03)
Рассмотрим теперь случай, когда мы знаем априори, что вероятность нахождения некоторой величины между
Эта задача по существу состоит в определении ширины областей, расположенных под кривыми
(3.04)
Поэтому средний логарифм ширины области, расположенной под кривой
(3.05)
Величина, которую мы здесь определяем как количество информации, противоположна по знаку величине, которую в аналогичных ситуациях обычно определяют как энтропию. Данное здесь определение не совпадает с определением Р.А. Фишера для статистических задач, хотя оно также является статистическим определением и может применяться в методах статистики вместо определения Фишера.
В частности, если