).

  Каждое алгебраическое У. всегда имеет хотя бы одно решение, действительное или комплексное. Это составляет содержание т. н. основной теоремы алгебры, строгое доказательство которой впервые было дано К. Гауссом в 1799. Если a – решение У. (*), то многочлен a 0 x n + a 1 x n-1 +... + a n делится на х – a. Если он делится на (х – a) k , но не делится на (х – a) k+1 , то решение a имеет кратность k. Число всех решений У. (*), если каждое считать столько раз, какова его кратность, равно n .

  Если f (x )трансцендентная функция , то У. f (x ) = 0 называются трансцендентным (см., например, Кеплера уравнение ), причём в зависимости от вида f (x ) оно называется тригонометрическим У., логарифмическим У., показательным У. Рассматриваются также иррациональные У., то есть У., содержащие неизвестное под знаком радикала. При практическом решении У. обычно применяются различные приближённые методы решения У.

  Среди систем У. простейшими являются системы линейных У., то есть У., в которых fk суть многочлены первых степеней относительно x 1 , x 2 ,..., х п (см. Линейное уравнение ).

  Решение системы У. (не обязательно линейных) сводится, вообще говоря, к решению одного У. при помощи т. н. исключения неизвестных (см. также Результант ).

  В аналитической геометрии одно У. с двумя неизвестными интерпретируется при помощи кривой на плоскости, координаты всех точек которой удовлетворяют данному У. Одно У. с тремя неизвестными интерпретируется при помощи поверхности в трёхмерном пространстве. При этой интерпретации решение системы У. совпадает с задачей о разыскании точек пересечения линий, поверхностей и т.д. У. с большим числом неизвестных интерпретируются при помощи многообразий в n -мерных пространствах.

  В теории чисел рассматриваются неопределенные У., то есть У. с несколькими неизвестными, для которых ищутся целые или же рациональные решения (см. Диофантовы уравнения ). Например, целые решения У. x 2 + y 2 = z 2 вид х = m 2 -n 2 , у = 2 mn, z = m 2 + n 2 где m и n – целые числа.

  С наиболее общей точки зрения, У. является записью задачи о разыскании таких элементов некоторого множества А, что F (a ) = Ф (а

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату