рис. 4, являются всевозможные прямолинейные лучи, выходящие из начала координат; начало координат является особой точкой и этого уравнения.
Начальные условия. Геометрическая интерпретация Д. у. 1-го порядка приводит к мысли, что через каждую внутреннюю точку М области G с заданным непрерывным полем направлений можно провести одну вполне определённую интегральную кривую.
В отношении существования интегральной кривой сформулированная гипотеза оказывается правильной. Доказательство этого предложения принадлежит Дж. Пеано. В отношении же единственности интегральной кривой, проходящей через заданную точку, высказанная выше гипотеза оказывается, вообще говоря, ошибочной. Уже для такого простого уравнения, как
у которого правая часть непрерывна во всей плоскости, интегральные кривые имеют вид, изображённый на рис. 5. Единственность интегральной кривой, проходящей через заданную точку, нарушается здесь во всех точках оси Ox.
Единственность, т. е. однозначное определение интегральной кривой условием её прохождения через заданную точку, имеет место для уравнений (Б) с непрерывной правой частью при том дополнительном условии, что функция f (х, у) имеет в рассматриваемой области ограниченную производную по у.
Это требование является частным случаем следующего, несколько более широкого условия Липшица: существует такая постоянная L, что в рассматриваемой области всегда
|f (x, y1) - f (x, y2)| < L |у1 – у2|.
Это условие чаще всего приводится в учебниках как достаточное условие единственности.
С аналитической стороны теоремы существования и единственности для уравнения вида (Б) обозначают следующее: если выполнены надлежащие условия [например, функция f (x, y) непрерывна и имеет ограниченную производную по у], то задание для «начального» значения x0 независимого переменного х «начального» значения у0 = у (x0) функции у (х) выделяет из семейства всех решений у (х) одно определённое решение. Например, если для рассмотренного выше уравнения (1) потребовать, чтобы в начальный момент времени t0 = 0 температура тела была равна «начальному» значению Т0, то из бесконечного семейства решений (2) выделится одно определённое решение, удовлетворяющее заданным начальным условиям:
T (t) = T0e-kt.
Этот пример типичен: в механике и физике Д. у. обычно определяют общие законы течения какого-либо явления; однако, чтобы получить из этих законов определённые количественные результаты, надо присоединить к ним сведения о начальном состоянии изучаемой физической системы в некоторый определённый выбранный в качестве «начального» момент времени t0.
Если условия единственности выполнены, то решение y (x), удовлетворяющее условию у (x0) = у0, можно записать в виде:
y (x) = j(x; х0, у0), (5)
где x0 и у0 входят как параметры, функция же j (х; x0, y0) трёх переменных х, x0 и y0 однозначно определяется самим уравнением (Б). Важно отметить, что при достаточно малом изменении поля (правой части Д. у.) функция j(х; x0, у0) меняется сколь угодно мало на конечном промежутке изменения переменного х — имеется непрерывная зависимость решения от правой части Д. у. Если правая часть f (x, у) Д. у. непрерывна и её производная по у ограничена (или удовлетворяет условию Липшица), то имеет место также непрерывность j(х; х0, у0) по x0 и y0.
Если в окрестности точки (х0, у0) для уравнения (Б) выполнены условия единственности, то все интегральные кривые, проходящие через достаточно малую окрестность точки (x0, у0), пересекают вертикальную прямую х = х0 и определяются ординатой у = С своей точки пересечения с этой прямой (см. рис. 6). Т. о., все эти решения содержатся в семействе с одним параметром С:
y (x) = F (x, C),
которое является общим решением Д. у. (Б).
В окрестности точек, в которых нарушаются условия единственности, картина может быть сложнее. Весьма сложен и вопрос о поведении интегральных кривых «в целом», а не в окрестности точки (x0, у0).
Общий интеграл. Особые решения. Естественно поставить обратную задачу: задано семейство кривых, зависящих от параметра С, требуется найти Д. у., для которого кривые заданного семейства служили бы интегральными кривыми. Общий метод для решения этой задачи заключается в следующем: считая семейство кривых на плоскости хОу заданным при помощи соотношения
F (x, y, C) = 0, (6)
дифференцируют (6) при постоянном С и получают
или в симметричной записи
и из двух уравнений (6) и (7) или (6) и (8) исключают параметр С. Если данное Д. у. получается таким образом из соотношения (6), то это соотношение называется общим интегралом заданного Д. у. Одно и то же Д. у. может иметь много различных общих интегралов. После нахождения для заданного Д. у. общего интеграла оказывается необходимым, вообще говоря, ещё исследовать, не имеет ли Д. у. дополнительных решений, не содержащихся в семействе интегральных кривых (6).
Пусть, например, задано семейство кривых
(х -С)3 - у = 0. (9)
Дифференцируя (9) при постоянном С получают
3(х - С)2 - у' = 0,
после же исключения С приходят к Д. у.
27y2 - (y ')3 = 0, (10)
равносильному уравнению (4). Легко видеть, что кроме решений (9), уравнение (10) имеет решение
y º 0. (11)
Решение уравнения (10) самого общего вида таково:
где -¥ £ C1 £ C2 £ +¥ (рис. 7). Оно зависит от двух параметров C1 и C2, но составляется из кусков кривых однопараметрического семейства (9) и куска особого решения (11).
Решение (11) уравнения (10) может служить примером особого решения Д. у. В качестве другого примера можно рассмотреть семейство прямых
4(у - Cx) + C2= 0. (12)
Эти прямые являются интегральными кривыми Д. у.
4(у - ху') +