(x0) + f' (x0) (x1 - x0).

Погрешность этого равенства приближённо равна половине второго дифференциала функции, т. е.

  1/2 d2f = 1/2 f' (x0) (x1x0)2.

  Приложения. В Д. и. устанавливаются связи между свойствами функции и её производных (или дифференциалов), выражаемые основными теоремами Д. и. К их числу относятся Ролля теорема, формула Лагранжа f (a) — f (b) = f' (c)(bа), где a < с < b (подробнее см. Конечных приращений формула), и Тейлора формула.

  Эти предложения позволяют методами Д. и. провести подробное исследование поведения функций, обладающих достаточной гладкостью (т. е. имеющих производные достаточно высокого порядка). Таким путём удаётся исследовать степень гладкости, выпуклость и вогнутость, возрастание и убывание функций, их экстремумы, найти их асимптоты, точки перегиба (см. Перегиба точка), вычислить кривизну кривой, выяснить характер её особых точек и т.д. Например, условие f' (x) > 0 влечёт за собой (строгое) возрастание функции у = f (x), а условие f' (x) > 0 — её (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности её области определения, находятся среди корней уравнения f' (x) = 0.

  Исследование функций при помощи производных составляет основное приложение Д. и. Кроме того, Д. и. позволяет вычислять различного рода пределы функций, в частности пределы вида 0/0 и ¥/¥ (см. Неопределённое выражение, Лопиталя правило). Д. и. особенно удобно для исследования элементарных функций, т.к. в этом случае их производные выписываются в явной форме.

  Д. и. функций многих переменных. Методы Д. и. применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х, у) частной производной по х называется производная этой функции по х при постоянном у. Эта частная производная обозначается z'x, f'x (x, y), ¶z/х или ¶f (x, y)/¶x, так что

 

Аналогично определяется и обозначается частная производная z по у. Величина

  Dz = f (x + Dx, y + Dy) - f (x, y)

называется полным приращением функции z = f (x, y). Если его можно представить в виде

  Dz = ADx + ВDу + a,

где a — бесконечно малая более высокого порядка, чем расстояние между точками (х, у) и (х + Dх, у + Dу), то говорят, что функция z = f (x, y) дифференцируема. Слагаемые АDх + ВDу образуют полный дифференциал dz функции z = f (x, y), причём А = z'x, B = z'y. Вместо Dx и Dy обычно пишут dx и dy, так что

 

  Геометрически дифференцируемость функции двух переменных означает существование у её графика касательной плоскости, а дифференциал представляет собой приращение аппликаты касательной плоскости, когда независимые переменные получают приращения dx и dy. Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функций одного переменного, для функций двух переменных существование обеих частных производных первого порядка ещё не гарантирует дифференцируемости функции. Однако, если частные производные кроме того ещё непрерывны, то функция дифференцируема.

  Аналогично определяются частные производные высших порядков. Частные производные ¶2f/х2 и ¶2f/у2, в которых дифференцирование ведётся по одному переменному, называют чистыми, а частные производные ¶2f/xy и ¶2f/ух— смешанными. Если смешанные частные производные непрерывны, то они между собой равны. Все эти определения и обозначения переносятся на случай большего числа переменных.

  Историческая справка. Отдельные задачи об определении касательных к кривым и о нахождении максимальных и минимальных значений переменных величин были решены ещё математиками Древней Греции. Например, были найдены способы построения касательных к коническим сечениям и некоторым другим кривым. Однако разработанные античными математиками методы были применимы лишь в весьма частных случаях и далеки от идей Д. и.

  Эпохой создания Д. и. как самостоятельного раздела математики следует считать то время, когда было понято, что указанные специальные задачи вместе с рядом других (в особенности с задачей определения мгновенной скорости) решаются при помощи одного и того же математического аппарата — при помощи производных и дифференциалов. Это понимание было достигнуто И. Ньютоном и Г. Лейбницем.

  Около 1666 И. Ньютон разработал метод флюксий (см. Флюксий исчисление). Основные задачи Ньютон формулировал в терминах механики: 1) определение скорости движения по известной зависимости пути от времени; 2) определение пройденного за данное время пути по известной скорости. Непрерывную переменную Ньютон называл флюентой (текущей), её скорость — флюксией. Т. о., у Ньютона главными понятиями были производная (флюксия) и неопределённый интеграл как первообразная (флюента). Он стремился обосновать метод флюксий с помощью теории пределов, хотя последняя была им лишь намечена.

  В середине 70-х гг. 17 в. Г. Лейбниц разработал очень удобный алгоритм Д. и. Основными понятиями у Лейбница явились дифференциал как бесконечно малое приращение переменного и определённый интеграл как сумма бесконечно большого числа дифференциалов. Лейбницу принадлежат обозначения дифференциала dx и интеграла òydx, ряд правил дифференцирования, удобная и гибкая символика и, наконец, сам термин «дифференциальное исчисление». Дальнейшее развитие Д. и. шло сначала по пути, намеченному Лейбницем; большую роль на этом этапе сыграли работы братьев Я. и И. Бернулли, Б. Тейлора и др.

  Следующим этапом в развитии Д. и. были работы Л. 1

  • « ...
  • 133
  • 134
  • 135
  • 136
  • » ...
  • 157
  • Добавить отзыв
    ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

    0

    Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

    Отметить Добавить цитату