группу вскоре после появления лёгочного дыхания и первичной рудиментации глаз (см. рис. II- 33). Органы чувств безногих амфибий идеально подходят для почвы, где обоняние, механорецепторы и вестибулярный аппарат совершенно необходимы для освоения и использования этой своеобразной трёхмерной среды обитания. Однако эта группа довольно плохо представлена в палеонтологической летописи. Существуют единичные находки палеоценовых безногих амфибий из палеоцена Бразилии (60 млн лет), но они уже практически не отличаются от современных представителей этой группы. По-видимому, уже к концу триаса (200 млн лет) заканчивается период формирования вторичных Apoda, которые произошли от ушедших в почву хвостатых амфибий. На это указывают находки Apoda с рудиментарными конечностями из нижней юры США. Следовательно, Apoda является смешанной группой, которую можно условно разделить на древних — Paleoapoda и новых — Neoapoda. Палеоапода никогда не обладали конечностями и ещё на заре эволюции амфибий перешли к обитанию в почве. Неоапода обладали конечностями, но утратили их после перехода к обитанию в почве.

Судя по палеонтологической летописи, в лабиринтный период эволюции позвоночных возникло огромное разнообразие форм амфибий. Они явно конкурировали между собой и охотились друг на друга. Лабиринты предоставили естественную возможность избегать массового каннибализма, но хищничество явно было одним из основных типов питания. Можно допустить, что дальнейшее продвижение на сушу было связано с выходом из лабиринтов наиболее адаптированных животных. По-видимому, попытки выхода амфибий на сушу предпринимались неоднократно. Покидавшие лабиринты животные заметно различались по морфологическому строению, поскольку к этому моменту прошли гигантский, но относительно независимый путь адаптаций к полуводной среде.

Современные хвостатые амфибии, судя по палеонтологическим данным, довольно долго вели почвенный образ жизни уже после появления всего необходимого набора адаптации для наземного существования. Они явно много раз независимо друг от друга выходили из почвы и эволюционировали как самостоятельные наземные

246

группы (см. рис. II-32; II-33). Этим объясняются столь существенные различия между современными хвостатыми амфибиями и многими вымершими группами. Следы множественности выходов на сушу можно увидеть в довольно глубоких морфологических различиях лабиринтодонтов. Темноспондилы (Temnospondyli) отличаются от антракозавров (Anthracosauria) таким важным и консервативным признаком, как строение тел позвонков. Различия столь велики, что скорее всего эти две группы долго эволюционировали независимо и вышли на сушу каждая сама по себе, а не произошли от общего предка. Эволюция многих независимо вышедших на сушу амфибии завершилась возникновением крупных видов, которые стали примером тупикового гигантизма, а не перспективным этапом эволюции позвоночных на суше.

По-видимому, первые выходы на поверхность из лабиринтов древних тетрапод удачно завершились к верхнему девону (360 млн лет). У ихтиостег внутри лабиринтов сложились вполне развитые конечности, эффективная локомоция и вполне адаптированные к наземному существованию органы чувств. Они появились на суше, как столичная примадонна в глухом провинциальном театре, а не как местная деревенская дебютантка. Хвостатые наземные амфибии стали быстрыми и хорошо подготовленными завоевателями суши, которые дали в палеозое мощную радиацию. Она привела к появлению большого разнообразия форм амфибий и их вторичному возвращению в воду, но уже в качестве крупных и агрессивных хищников.

Бесхвостые амфибии скорее всего морфологически сложились ещё в почвенных лабиринтах или пещерах (см. рис II-33). Они заняли в пещерах воздушную нишу, перебравшись на стены лабиринтов, уменьшившись в размерах и утратив хвост. Уменьшение длины позвоночника и слияние костей конечностей сопровождалось развитием обоняния и вестибулярного аппарата. Столь специализированные амфибии почти не оставили палеонтологических свидетельств своей истории, как и многие другие пещерные обитатели. Их последующее появление во влажных лесах было практически мгновенным, поскольку весь подготовительный период происходил в подземных условиях. Этим отчасти объясняется «неожиданность» и «необъяснимость» их появления в палеонтологической летописи без каких-либо переходных форм.

Если древние проамфибии неоднократно выходили на сушу на протяжении десятков миллионов лет, то вполне закономерен вопрос о неврологическом обеспечении этого процесса. Возникшими конечностями, лёгкими и сосудами надо было согласованно управлять, что невозможно без нервной системы. Иначе говоря, у проамфибий должны были возникнуть новый дыхательный, двигательный и интегративный центры.

247

Казалось бы, что такое количество принципиально новых функций должно потребовать необычайно глубокой перестройки нервной системы. Однако этого не произошло. Моторный автоматизм, возникший в спинном мозге первичноводных позвоночных, оказался вполне достаточным субстратом для развития систем наземной локомоции. Принципиальным событием было появление скромного центра согласованного управления конечностями — красного ядра (см. рис. II-30, д, е). Этот центр сформировался в ретикулярной формации, которая простирается от продолговатого до промежуточного мозга амфибий.

Небольшое скопление крупных нейронов возникло на пересечении важнейших моторных и сенсорных путей. При этом рядом с красным ядром сформировались ещё два мозговых ядра, определяющих саму возможность пребывания на суше: сосудодвигательный и дыхательный центры. Собственно говоря, в нижней части среднего мозга сложился ретикулярный «тетраподный» центр. Он практически объединил все неврологические приобретения головного мозга, необходимые для жизни вне воды. Согласованное управление конечностями, дыханием и сердечно-сосудистой системой реализуется в этом центре через двигательные (эфферентные) выходы. Однако в этом «тетраподном» ретикулярном комплексе реализованы не только моторные, но и сенсорные достижения адаптивной эволюции. К клеткам комплекса поступает информация от гломусных клеток каротидного лабиринта, которые чувствительны к концентрации двуокиси углерода в крови. В результате обеспечивается обратная связь между дыхательной активностью и концентрацией кислорода в крови (Piiper, Scheid, 1977). Без такой системы регуляции дыхания выход на сушу едва ли был возможен.

Сердечно-сосудистая часть этого ретикулярного центра сложилась ещё у рыб. Многие рыбы способны к рефлекторному замедлению дыхания и сердечного ритма. На этой базе и возник центр регуляции сердечной активности, который позволяет наземным животным точно приспосабливать физиологическую активность и метаболизм к конкретной ситуации. Однако сенсорным источником контроля за сердечной

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату