Рис. 37. Установка по изменению кристаллической структуры металлов, путем воздействия на расплав торсионным полем
Печь Таммана представляет собой вертикально установленный цилиндр 1, изготовленный из особой тугоплавкой стали. Сверху и снизу цилиндр закрыт крышками, охлаждаемыми водой. Металлический корпус цилиндра, толщиной 16,5 см. заземлен, поэтому никакие электромагнитные поля не могут проникнуть внутрь цилиндра. Внутри печи в тигель 3 закладывается металл 4 и плавится с помощью нагревательного элемента 5, в качестве которого использовалась графитовая трубка. После того, как металл расплавится, отключается нагревательный элемент 5 и включается торсионный генератор 2, расположенный на расстоянии 40 см. от оси цилиндра. Торсионный генератор облучает цилиндр в течении 30 мин., потребляя при этом мощность 30 мВт. За время 30 мин. металл охлаждался с 1400° С до 800° С. Затем его вынимали из печи, охлаждали на воздухе, после чего слиток разрезался и производился его физико-химический анализ. Результаты анализа показали, что у облученного торсионным полем металла менялся шаг кристаллической решетки или металл имел аморфную структуру по всему объему слитка.
На
Рис. 38. Изменение структуры олова (увел 6000) а) - контрольный образец, б) - облученный торсионным полем.
Важно отметить то обстоятельство, что торсионное излучение генератора прошло сквозь заземленную металлическую стенку толщиной 1,5 см. и воздействовало на расплавленный металл. Этого невозможно добиться никакими электромагнитными полями.
Рис. 39. Микроструктура литой меди (увел 100): а) - контрольный образец; б) - после облучения торсионным полем.
На рис. 39 показано изменение структуры меди под действием торсионного излучения.
Таблица 4.
Воздействие торсионного излучения на расплав меди повышает прочность и пластичность металла. В
4.3. Воздействие торсионных полей на воду и растения.
Одним из источников статического торсионного поля является постоянный магнит. Действительно, собственное вращение электронов внутри намагниченного ферромагнетика порождает суммарное магнитное и торсионное поле магнита (см.
Рис. 40. Торсионные поля, создаваемые: а) отдельным электроном; б) постоянным магнитом.
Связь между магнитным моментом ферромагнетика и его механическим моментом была обнаружена американским физиком С. Барнеттом в 1909 г. Рассуждения С. Барнетта были очень простые. Электрон заряжен, следовательно, его собственное механическое вращение создает круговой ток. Этот ток порождает магнитное поле, образующее магнитный момент электрона (см.
Опыты Барнетта по механическому вращению ферромагнитных стержней подтвердили правильность высказанных выше рассуждений и показали, что в результате вращения ферромагнетика у него возникает магнитное поле.
Можно провести обратный опыт, а именно, изменить суммарный магнитный момент электронов в ферромагнетике, в результате чего ферромагнетик начнет механически вращаться. Этот опыт успешно был проведен А. Эйнштейном и де Гаазом в 1915 г.
Поскольку механическое вращение электрона порождает его торсионное поле, то любой магнит представляет собой источник статического торсионного поля (см.
В 1984-85 гг. в России были выполнены эксперименты, в которых изучалось воздействие излучения торсионного генератора на стебли и корни различных растений: хлопчатника, люпина, пшеницы, перца и т. д.
В экспериментах торсионный генератор устанавливался на расстоянии 5 метров от растения. Диаграмма направленности излучения захватывала одновременно стебли и корни растения. На
Рис. 41. Результаты измерения ОДП хлопчатника в диапазоне частот