Все эти свойства (за исключением конкретного значения постоянной Планка)
Решение уравнений (B.1), которое описывает стабильную сферически симметричную массивную (заряженную или нет) частицу, приводит одновременно к двум представлениям о плотности распределения ее материи:
а) как плотности материи точечной частицы и
б) как полевого клубка, образованного комплексным торсионным полем (полем инерции).
Основные трудности современной квантовой теории порождены непониманием физической природы волновой функции и попыткой представить протяженный объект как точку или как плоскую волну. Точка в классической теории поля описывает пробную частицу, которая не имеет собственного поля. Поэтому квантовую теорию, следующую из теории вакуума, необходимо рассматривать как способ описать движение частицы с учетом ее собственного поля. Это невозможно было сделать в старой квантовой теории по той простой причине, что плотность материи частицы и плотность поля, создаваемого ею, имеют различную природу. Не существовало универсальной физической характеристики для однообразного описания обеих плотностей. Сейчас такая физическая характеристика появилась в виде поля инерции - торсионного поля, которое оказывается действительно универсальным, поскольку явлению инерции подвержены все виды материи.
На
Рис. 32. Вакуумная квантовая механика отказывается от понятия пробной частицы и описывает частицу с учетом ее собственного поля, используя универсальное физическое поле - поле инерции.
Что касается конкретного значения постоянной Планка, то его, по-видимому, надо рассматривать как эмпирический факт, характеризующий геометрические размеры атома водорода.
Интересным оказалось то обстоятельство, что вакуумная квантовая теория допускает и вероятностную трактовку, удовлетворяя принципу соответствия со старой теорией. Вероятностная трактовка движения протяженного объекта впервые в физике возникла в классической механике Лиувилля. В этой механике при рассмотрении движения капли жидкости как единого целого выделяется особая точка капли - ее центр масс. По мере изменения формы капли меняется и положение центра масс внутри ее. Если плотность капли переменна, то центр масс наиболее вероятно находится в области, где плотность капли максимальна. Поэтому плотность вещества капли оказывается пропорциональной плотности вероятности найти центр масс в той или иной точке пространства внутри капли.
В квантовой теории вместо капли жидкости мы имеем полевой сгусток, образованный полем инерции частицы. Так же как и капля, этот полевой сгусток может менять форму, что, в свою очередь, приводит к изменению положения центра масс сгустка внутри его. Описывая движение полевого сгустка как единого целого через его центр масс, мы с неизбежностью приходим к вероятностному описанию движения.
Протяженную каплю можно рассматривать как набор точечных частиц, каждая из которых характеризуется тремя координатами х, у, z и импульсом с тремя компонентами рx, рy , рz . В механике Лиувилля координаты точек внутри капли образуют
D pDx = const
Здесь Dx рассматривается как разброс координат точек внутри капли, а Dp как разброс соответствующих им импульсов. Допустим, что капля принимает форму линии (вытягивается в линию), тогда ее импульс строго определен, поскольку разброс Dp = 0. Зато каждая точка линии становится равноправной, поэтому координата капли не определена из-за соотношения Dx = Ґ, которое следует из теоремы о сохранении фазового объема капли.
В теории поля для полевого сгустка, состоящего из набора плоских волн, теорема о сохранении фазового объема записывается в виде:
DpDx = p
где Dx - разброс координат полевого сгустка, а Dp - разброс волновых векторов плоских волн, образующих полевой сгусток. Если умножить обе части равенства на h и ввести обозначение р = h k, то мы получаем известное соотношение неопределенности Гейзенберга:
DpDx = p h
Это соотношение выполняется и для полевого сгустка, образованного набором плоских волн поля инерции в квантовой теории, следующей из теории физического вакуума.
3.9. Квантование в Солнечной системе.
Новая квантовая теория позволяет нам расширить наши представления об области действия квантовых явлений. В настоящее время считается, что квантовая теория применима только к описанию явлений микромира. Для описания таких макроявлений, как движение планет вокруг Солнца все еще используется представление о планете, как о пробной, не имеющей своего собственного поля, частице. Однако более точное описание движения планет достигается тогда, когда учитывается собственное поле