физика.

Рис. 28. Экспериментальные данные по торсионному взаимодействию поляризованных нуклонов в зависимости от взаимной ориентации их спинов. Горизонтальные стрелки показывают направление и величину (толщина стрелки) торсионного взаимодействия. Вертикальная стрелка указывает направление орбитального момента рассеиваемой частицы.

Основной результат, полученный спиновой физикой состоит в том, что при взаимодействиях на малых расстояниях (порядка 10-12 см.) спин частиц начинает играть существенную роль. Было установлено, что торсионные (или спин-спиновые) взаимодействия определяют величину и характер сил, действующих между поляризованными частицами (см. рис. 28).

Рис. 29. Суперпотенциальная энергия, полученная из решения уравнений вакуума. Показана зависимость от ориентации спина мишени: а) - взаимодействие протонов и поляризованного ядра при re/rN = -2, rN/rs = 1,5; б) - то же, для нейтронов при re/rN = 0, rN/rs = 1,5. Угол q отсчитывается от спина ядра до радиуса-вектора, проведенного в точку наблюдения.

Характер обнаруженных в эксперименте торсионных взаимодействий нуклонов оказался настолько сложным, что поправки, вносимые в теорию, сделали теорию бессодержательной. Дело дошло до того, что теоретикам недостает идей для того, чтобы описать новые данные эксперимента. Этот «ментальный кризис» теории усугубляется еще и тем, что стоимость эксперимента в спиновой физике растет по мере его усложнения и в настоящее время приблизилась к стоимости ускорителя, что привело к материальному кризису. Следствием такого положения вещей явилось замораживание финансирования строительства новых ускорителей в некоторых странах.

Выход из сложившейся критической ситуации может быть только один - в построении дедуктивной теории элементарных частиц. Именно эту возможность предоставляет нам теория физического вакуума. Решения ее уравнений приводят к потенциалу взаимодействия - суперпотенциалу, который включает в себя:

rg - гравитационный радиус,

re - электромагнитный радиус,

rN - ядерный радиус и

rs - спиновый радиус,

отвечающие за гравитационные (rg), электромагнитные (re), ядерные (rN) и спин-торсионные (rs) взаимодействия.

На рис. 29 приведены качественные графики суперпотенциальной энергии, полученные из решения уравнений вакуума.

Из графика видна сильная зависимость взаимодействия частиц от ориентации спинов, что и наблюдается в экспериментах спиновой физики. Конечно, окончательный ответ будет дан тогда, когда будут проведены тщательные исследования, основанные на решениях вакуумных уравнений.

3.6. Скалярное электромагнитное поле и передача электромагнитной энергии по одному проводу.

Уравнения вакуума, как это и положено уравнениям единой теории поля, переходят в известные физические уравнения в различных частных случаях. Если мы ограничимся рассмотрением слабых электромагнитных полей и движением зарядов с не слишком большими скоростями, то из уравнения вакуума (B.1) последуют уравнения, подобные уравнениям электродинамики Максвелла. Под слабыми полями в данном случае понимаются такие электромагнитные поля, напряженность которых удовлетворяет неравенству Е, Н << 10-16 ед. СГСЕ. Такие слабые электромагнитные поля встречаются на расстояниях порядка r >> 10-13 см. от элементарных частиц, т.е. на таких расстояниях, где действие ядерных и слабых взаимодействий становится незначительным. Можно считать, что в нашей повседневной жизни мы всегда имеем дело со слабыми электромагнитными полями. С другой стороны, движение частиц с не слишком большими скоростями означает, что энергии заряженных частиц не слишком велики и, из-за недостатка энергии, они не вступают, например, в ядерные реакции.

Если ограничится случаем, когда заряды частиц постоянны (е = const), то слабые электромагнитные поля в теории вакуума описываются векторным потенциалом (так же, как и в элекгродинамике Максвелла), через который определяются шесть независимых компонент электромагнитного поля: три компоненты электрического поля Е и три компоненты магнитного поля Н.

В общем случае потенциал электромагнитного поля в вакуумной электродинамике оказывается симметричным тензором второго ранга, что порождает дополнительные компоненты у электромагнитного поля. Точное решение уравнений вакуумной электродинамики для зарядов, у которых е № const, предсказывает существование нового скалярного электромагнитного поля вида:

S = - de(t) / rc dt

где r - расстояние от заряда до точки наблюдения, с - скорость света, e(t) - переменный заряд.

В обычной электродинамике такое скалярное поле отсутствует из-за того, что потенциал в ней является вектором. Если заряженная частица е движется со скоростью V и попадает в скалярное электромагнитное поле S, то на нее действует сила FS:

FS = eSV = - е [de(t) / rc dt] V

Поскольку движение зарядов представляет собой электрический ток, то это означает, что скалярное поле и порожденная эти полем сила должны обнаружить себя в экспериментах с токами.

Приведенные выше формулы были получены в предположении, что заряды частиц меняются со временем и, казалось бы, не имеют отношения к реальным явлениям, поскольку заряды элементарных частиц постоянны. Тем не менее, эти формулы вполне применимы к системе, состоящей из большого количества постоянных зарядов, когда число этих зарядов меняется во времени. Эксперименты такого рода проводил Никола Тесла в начале 20-го века. Для исследования электродинамических систем с переменным зарядом Тесла использовал заряженную сферу (см. рис.29 а). При разрядке сферы на землю вокруг сферы возникало скалярное поле S. Кроме того, и по одному проводнику протекал ток I, не подчиняющийся законам Кирхгофа, поскольку цепь оказывалась незамкнутой. Одновременно на проводник действовала сила FS, направленная вдоль проводника (в отличие от обычных магнитных сил, действующих перпендикулярно току).

Существование сил, действующих на проводник с током и направленных вдоль проводника, было

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату