:- ор( 1200, xfx, ':-').
:- ор( 1200, fx, [:-, ?-] ).
:- op( 1100, xfy, ';').
:- ор( 1000, xfy, ',').
:- op( 700, xfx, [=, is, <, >, =<, >=, ==, ==, ==, =:=]).
:- op( 500, yfx, [+, -] ).
:- op( 500, fx, [+, -, not] ).
:- op( 400, yfx, [*, /, div] ).
:- op( 300, xfx, mod).
Рис. 3. 8. Множество предопределенных операторов
.
Для удобства некоторые операторы в пролог-системах определены заранее, чтобы ими можно было пользоваться сразу, без какого-либо определения их в программе. Набор таких операторов и их приоритеты зависят от реализации. Мы будем предполагать, что множество этих 'стандартных' операторов ведет себя так, как если бы оно было определено с помощью предложений, приведенных на рис. 3.8. Как видно из того же рисунка, несколько операторов могут быть определены в одном предложении, если только они все имеют одинаковый приоритет и тип. В этом случае имена операторов записываются в виде списка. Использование операторов может значительно повысить наглядность, 'читабельность' программы. Для примера предположим, что мы пишем программу для обработки булевских выражений. В такой программе мы, возможно, захотим записать утверждение одной из теорем де Моргана, которое в математических обозначениях записывается так:
~ (А & В) <===> ~А v ~В
Приведем один из способов записи этого утверждения в виде прологовского предложения:
эквивалентно( not( и( А, В)), или( not( A, not( B))).
Однако хорошим стилем программирования было бы попытаться сохранить по возможности больше сходства между видом записи исходной задачи и видом, используемом в программе ее решения. В нашем примере этого можно достичь почти в полной мере, применив операторы. Подходящее множество операторов для наших целей можно определить так:
:- ор( 800, xfx, <===>).
:- ор( 700, xfy, v).
:- ор( 600, хfу, &).
:- ор( 500, fy, ~).
Теперь правило де Моргана можно записать в виде следующего факта:
~(А & В) <===> ~А v ~В.
В соответствии с нашими определениями операторов этот терм понимается так, как это показано на рис. 3.9.
Рис. 3. 9. Интерпретация терма ~(А & В) <===> ~A v ~В
Подытожим:
Наглядность программы часто можно улучшить, использовав операторную нотацию. Операторы бывают инфиксные, префиксные и постфиксные.
В принципе, с оператором не связываются никакие действия над данными, за исключением особых случаев. Определение оператора не содержит описания каких-либо действий, оно лишь вводит новый способ записи. Операторы, как и функторы, лишь связывают компоненты в единую структуру.