что она видела в этом большую угрозу своим интересам. Эта дискуссия получила название геополитики.

Точка зрения Великобритании заключалась в том, что создание такого наземного моста в Евразии — от Атлантического океана до Тихого через Китай — положит конец существованию самой Британской империи. Поэтому начиная с 1898 года Великобритания занялась созданием Тройственного Согласия (Антанты), чтобы начать первую мировую войну. В тридцатые годы Великобритания при поддержке своих сторонников в Соединенных Штатах привела Гитлера к власти по тем же самим причинам. За это столетие на европейском континенте произошли две разрушительные мировые войны.

Для возрождения цивилизации, для выхода на новую ступень ее развития необходимо реализовать замысел, который не успел осуществить Витте. Учитывая, что Китай, другие страны восточной и южной Азии вместе со странами северной Евразии представляют собой сердцевину современной и будущей цивилизации, необходимо реализовать идею создания такого наземного моста, который будет способствовать развитию экономики и взаимосвязям стран Евразии, включая восточную и южную Азию и Европу. Эта идея запоздала уже на целое столетие. Естественная историческая роль России — выполнить свою ключевую миссию по реализации этой идеи. Практическая реализация этой идеи станет основой необходимого физического переустройства мира на развалинах нынешней обанкротившейся валютно- финансовой системы.

Благодарю за внимание.

«Поиск путей преодоления экономического кризиса следует начинать с критики математиков»

Выступление Линдона Ларуша в Методологическом университете, г.Москва, 8 июня 1995 года.

От Методологического университета господина Ларуша как основателя науки физической экономики, известного в России по его книге «Вы на самом деле хотели бы знать все об экономике?», которая была опубликована в Москве на русском языке в 1992 году, представила Нина Громыко.

Не надо преувеличивать: я не создал науку физической экономики, я только вдохнул в нее новую жизнь. Эта работа началась давно, в тридцатых годах нашего столетия, когда я был еще подростком (я понимаю, что для некоторых это уже древняя история). Я изучал французскую, английскую и немецкую философию, но особенно интересовался семнадцатым и восемнадцатым веками.

Я очень рано стал приверженцем Лейбница, а позже — врагом Канта. Я защищал Лейбница от Канта. Позже, после войны, в конце сорок седьмого—начале сорок восьмого года я познакомился с трудами Норберта Винера. Он считается отцом информационной теории, которая стала очень популярной.

Норберт Винер основывает свою теорию информации и интеллекта на теории газов — статистической теории газов, основателем которой является Людвиг Больцман. С тех пор, как вы наверно знаете, очень много тумана напущено по поводу информационной теории, но мне показалось, что это самая ужасающая вещь, которая мне когда-либо встречалась.

Я пришел к выводу, что все, сказанное Винером, было лишь выродившимся вариантом утверждения, уже высказанного Кантом. Будучи очень самонадеянным молодым человеком, я заявил: «Я смогу их победить. Я смогу подмести пол профессором Винером». И действительно смог, в словесном смысле.

Объясняя суть совершаемых человеком научных открытий, я, естественно, рассматривал и роль технологий, в которые обычно воплощаются идеи человека. Так вот, ключевым и простейшим доказательством ложности идей не только Винера, но и ученого дурака (умелого математика, но тем не менее, ученого дурака) Джона Фон Неймана является роль языка в распространении идей о технологиях или научных открытиях. Фон Нейман умел заполнять большое количество учебных досок различными формулами, не выдвигая при этом никаких идей. Он был самым главным из основателей того, что сегодня называется системным анализом, который также исключает всякие возможности для новых идей.

Как же теперь, после решения этой проблемы, мы должны бросить вызов математикам?

Я начал с работ Георга Кантора. Изучив, в частности, его последнюю работу «К обоснованию учения о трансфинитных множествах», я вновь вернулся к фундаментальному открытию Бернхарда Римана. Тогда я понял, почему идеи нельзя выражать математическим способом. Но можно представлять функции, которые при помощи идей объясняют, что происходит в математике.

Мне сказали, что некоторые из вас изучали формальную логику. Давайте обсудим это с точки зрения формальной логики. Возьмем модель формальной логики. Не будем для этого использовать логику в том смысле, который придается ей сейчас; обойдемся без силлогизмов Аристотеля и без метафизики. Используем в качестве этой модели геометрию. Мы не будем использовать знак равенства в логике, мы используем положения «больше чем» или «меньше чем» в различных значениях, а вместо знака равенства — знак конгруэнтности. Потому что два явления могут казаться равными, но они могут быть не конгруэнтными. Многие современные математики не понимают этой разницы.

В любой системе, которая является типичным отражением евклидовой геометрии, вы можете доказать предположения и показать, что они совместимы и не противоречат друг другу. Такие предположения можно тогда назвать теоремами. Для любой системы теорем, которая может иногда называться структурой теорем, можно доказать, что она основывается на множестве аксиом и постулатов. Поэтому вместо того, чтобы думать о теоремах вы можете оперировать этим множеством аксиом и постулатов, потому, что множество аксиом и постулатов подразумевает все возможные теоремы данной структуры теорем.

Что же все таки открыл Риман? В марте 1853 г. молодой гений, которого звали Бернхард Риман, который учился в Геттингене, в Берлине и потом снова в Геттингене и был под покровительством Карла Гаусса и Лежена Дирихле, сделал открытие. Он получил специальное разрешение подготовить свою квалификационную диссертацию на основе поиска чего-либо подобного его открытию в других областях науки при помощи библиографических и иных источников. Спустя немного больше года, в июне 1854 года, он целый день докладывал группе профессоров по поводу своего открытия и защитил его.

Открытие Римана можно справедливо и точно описать следующим образом. Доклад «О гипотезах, лежащих в основаниях геометрии» — одна из самых блестящих работ во всей научной литературе. В ней все четко и ясно, в ней нет ничего непонятного, но почти никто, кто выражал свое мнение по этой работе, никогда не выражал ее искренне. Потому что эта работа огорчает всех математиков.

Чему же он бросил вызов? Он утверждал, что до той поры в геометрии существовали сомнительные положения, фундаментальные пороки, на которые его предшественники уже обращали внимание, хотя и не смогли по существу определить их эффект. Единственный важный прецедент, который ему удалось обнаружить, появился в двух работах Гаусса. В первой из этих важных работ, которая была опубликована в конце восемнадцатого века под латинским заглавием «Disquisitiones Arithmeticae», Гаусс занимается вопросом биквадратных вычетов, что связано с последовательностямипростых чисел и т.п. Позже Гаусс написал другую работу — об общей теории кривых поверхностей. Именно эти две работы Риман считал уникальными содержащими упоминания о том, чем занимался он сам.

Со своей стороны, я хотел бы описать суть проблемы с точки зрения структуры теорем. В том, что мы называем евклидовой геометрией, люди делают иногда ошибку, предполагая, что евклидова геометрия или ньютонианская физика, или картезианская физика имеют что-то общее с реально существующей Вселенной. На самом деле, они ничего не имеют общего с реально существующей Вселенной.

То, что мы называем «простой геометрией», не является продуктом нашего чувственного восприятия, а плодом нашего воображения. Мы делаем какие-то очень простые допущения. Мы вводим аксиоматические допущения на основе нашего воображения о характере времени и пространства. Мы допускаем, что пространство просто существует в трех измерениях: взад-вперед, вверх-вниз и со стороны в сторону. Мы допускаем, что время движется в одном измерении: назад и вперед. Мы допускаем, что в пространстве и во

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату