n = 9. Однако, перебирая все возможные значения m = 1, 2, 5, получим соответственно n = 8, 7, 4. Условие m n исключает все случаи, кроме m = 5, n = 4, для которого, однако, mn (m + n) (m — n) ≠ 90. Итак, мы получили, что не существует ни простейшего, ни иного треугольника Пифагора с площадью А = 360.

Можно было бы затронуть еще много других вопросов, но упомянем лишь об одном из них. Периметр треугольника равен

c = x + y + z; (5.3.9)

для простейшего треугольника Пифагора получаем

с = 2mn + (т2n2) + (m2 + n2) = 2n (m + n).

Мы предоставляем читателю самому отыскать метод нахождения всех треугольников Пифагора с заданным периметром. Не пренебрегайте рассмотрением

числовых примеров.

Мы решили задачу построения всех треугольников Пифагора. Это ведет нас к исследованию более общих связанных с ней задач. Естественным обобщением задачи Пифагора является задача Герона, названная по имени древнегреческого математика Герона, жившего в Александрии: найти все треугольники с целочисленными сторонами, площади которых также выражаются целыми числами. Эта задача отличается от задачи Пифагора тем, что условие наличия прямого угла заменено требованием целочисленности площади. Очевидно, что всякий треугольник Пифагора удовлетворяет условиям задачи Герона.

Для проверки того, является ли данный треугольник треугольником Герона, проще всего применить формулу Герона для площади треугольника,

где с — это периметр треугольника, определенный в (5.3.9). Хотя известно значительное число треугольников Герона, не существует общей формулы, описывающей все эти треугольники. Приведем несколько из них (не прямоугольных):

x = 7 y = 15 z = 20

    9     10     17

   13     14     15

   39     41     50

Мы не можем закончить рассказ о треугольниках Пифагора, не упомянув об одной из самых знаменитых проблем математики, гипотезе П. Ферма:

для n > 2 не существует натуральных чисел x, у, z таких, что

хn + уnzn.

Эта идея пришла к Ферма в то время, когда он изучал перевод с греческого «Арифметики» Диофанта. В этой книге в основном рассматриваются задачи, в решении которых применяются формулы для нахождения треугольников Пифагора. Читая эту книгу, Ферма делал пометки на нолях.

Ферма был взволнован своим «открытием», он верил, что у него есть удивительное доказательство, и сожалел, что не может его записать, так как поля слишком узки. С тех пор эта задача занимает математиков. Для нахождения доказательства изобретались самые искусные методы; этот поиск привел к открытию новых фундаментальных теорий в математике. Используя теоретические разработки и вычисления на ЭВМ, было показано, что теорема Ферма справедлива для многих значений степени n. В настоящее время мы знаем, что этот результат выполняется для всех значений n, удовлетворяющих неравенству 3 ≤ n ≤ 4002.

Попытки самых выдающихся математиков в течение столетий найти общее доказательство оказались тщетными. Поэтому распространилось мнение, что Ферма, несмотря на свой бесспорный талант, стал жертвой самообмана. Как бы ни широки были поля книги, маловероятно, что его доказательство было бы верным.

Конечно, вы имеете право попробовать свои силы в доказательстве этой теоремы, но предупреждаем, что еще ни одна теорема в математике не имела столько неправильных доказательств, как теорема Ферма. Лишь некоторые из них принадлежат хорошим математикам, остальные — дилетантам. Доказательства «последней теоремы Ферма» продолжают появляться в почте известных математиков, занимающихся теорией чисел. Большинство из этих доказательств сопровождается письмами с требованием о немедленном всемирном признании и выплате денежной премии, установленной одним немецким математиком (эта премия давно уже обесценилась в результате инфляции).

Система задач 5.3.

1. Найдите все такие треугольники Пифагора, у которых длина одной из сторон равна: а) 50, б) 22.

2. Используя условие представимости числа в виде суммы двух квадратов, определите, какие из чисел 100, 101…, 110 могут быть представлены в таком виде. Если возможно, найдите все представления. Какое из этих чисел может быть гипотенузой простейшего треугольника Пифагора?

3. Могут ли быть треугольниками Пифагора треугольники с площадями А = 78, A = 120, А = 1000?

4. Найдите все треугольники Пифагора с периметрами с = 88, с = 110.

ГЛАВА 6

СИСТЕМЫ СЧИСЛЕНИЯ

§ 1. Числа

«Все есть число» — учили древние пифагорейцы[8]. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда считают нас. В нашу жизнь прочно вошли: номера домов, квартир, телефонов, счетов, почтовые индексы. Каждый день наполнен потоком счетов, чеков и других бухгалтерских документов. Государственный бюджет исчисляется в миллиардах, а горы статистических данных являются принятым доводом в спорах. Эти цифры «крутятся» в компьютерах, которые анализируют состояние производства, следят за траекториями спутников и исследуют атомные ядра со скоростью до одного миллиарда операций в секунду.

Ко всему этому вела длинная дорога, начавшаяся с первых попыток человека систематизировать

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату