d = D(m1, n1) = 1. (5.2.5)

Так как произведение (5.2.4) этих двух взаимно простых чисел является квадратом, то можно использовать результат, изложенный в конце § 2 гл. 4 (стр. 50), согласно которому числа m1 и n1 являются квадратами

m1 = m2, n1 =, D(m, n) = 1. (5.2.6)

Здесь мы можем без нарушения общности считать, что m > 0, n > 0. Теперь подставим m2 и n2 вместо m1 и nсоответственно в уравнения (5.2.3) и (5.2.4);

получим

m2 = 1/2 z + 1/2 y, n2 = 1/2 z — 1/2 y, m2n2 = 1/4 x2,

т. е.

x = 2mn, y = m2n2, zm2 + n2. (5.2.7)

Проверка показывает, что эти три числа всегда удовлетворяют соотношению Пифагора х2 + у2 = z2.

Осталось определить, какие целые положительные числа m и n в действительности соответствуют простейшим треугольникам. Докажем, что следующие три условия на числа m и n являются необходимыми и достаточными:

(1) (m, n) = 1,

(2) m > n, (5.2.8)

(3) одно из чисел m и n четное, а другое — нечетное.

Доказательство. Сначала покажем, что если числа х, у, z образуют простейшую тройку, то условия (5.2.8) выполняются. Мы уже показали, что условие (1) является следствием того, что числа х, у, z взаимно простые. Условие (2) следует из того, что числа х, у, z — положительны. Чтобы увидеть, что условие (3) необходимо, заметим, что если m и n оба нечетные, то в соответствии с (5.2.7) у и z были бы оба четные, в противоречие с результатами, полученными в конце предыдущего параграфа.

Наоборот, если условия (5.2.8) выполнены, то соотношения (5.2.7) определяют простейшую тройку: условие (2) обеспечивает положительность чисел х, у и z.

Могут ли какие-нибудь два из этих трех чисел иметь общий простой множитель р? Такое простое число р, делящее два из них, должно также делить и третье в силу соотношения х2 + у2 = z2. Если число р делит х, то оно в соответствии с (5.2.7) должно делить 2mn. Число р не может равняться 2, потому что у и z нечетные в соответствии с условием (3) и (5.2.7). Предположим, что р ≠ 2 — нечетное простое число, делящее m. Тогда условие (1) и выражение (5.2.7) показывают, что р не может делить у и z. Такие же рассуждения применимы и для случая, если р делит число n.

Найдя необходимые и достаточные условия (5.2.8) для того, чтобы m и n давали простейший треугольник, можно вычислить все такие треугольники с помощью соотношения (5.2.7). Например, пусть

m = 11, n = 8.

Наши условия выполнены, и мы находим, что

х = 176, у = 57, z = 185.

В табл. 3 приведены все простейшие треугольники х, у, z для нескольких первых значений чисел т и n.

Таблица 3

Система задач 5.2.

1. Продлите таблицу для всех значений m ≤ 10.

2. Могут ли два разных набора значений чисел m и п, удовлетворяющих условию (5.2.8), дать один и тот же треугольник?

3. Найдите все пифагоровы треугольники, у которых длина гипотенузы не превосходит 100.

§ 3. Несколько задач о треугольниках Пифагора

Мы решили задачу нахождения всех треугольников Пифагора. Здесь, как почти всегда в математике, решение одной задачи приводит к постановке ряда других задач. Часто новые вопросы оказываются значительно более трудными, чем первоначальный.

Одним из естественных вопросов о простейших треугольниках является следующий. Пусть задана одна из сторон простейшего треугольника Пифагора, как найти остальные? Первым рассмотрим случай, когда известна сторона у. В соответствии с (5.2.7)

y = m2n2 = (m + n) (m — п), (5.3.1)

где m и n—числа, удовлетворяющие условиям (5.2.8).

В уравнении (5.3.1) множители (m + n) и (m — n) взаимно простые. Чтобы в этом убедиться, заметим, что эти множители

а = m + n, b = m — n (5.3.2)

оба нечетные, так как одно из чисел m и n нечетное, а другое четное. Если числа а и b имеют общий нечетный простой множитель р, то число р должно было бы делить

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату