времени, в который планета находится в определенной точке орбиты. Величины, определяющие орбиты планеты, называются элементами ее орбиты. За основную плоскость, относительно которой определяется положение орбиты, принимается плоскость эклиптики. Две точки, в которых орбита планеты пересекается с плоскостью эклиптики, называются узлами – восходящим и нисходящим. Восходящий узел тот, в котором планета пересекает эклиптику, удаляясь от ее южного полюса. Эллиптическую орбиту планеты определяют следующие 6 элементов (рис. 28): 1. Наклонение i плоскости орбиты к плоскости эклиптики. Наклонение может иметь любые значения между 0 и 180°. Если 0 Ј i
0, но не превосходит некоторого предела vc , то точка т будет двигаться по эллипсу, в одном из фокусов которого будет находиться точка С (рис. 30). Плоскость эллипса будет проходить через точки С, т и направление скорости v0 . Форма и размеры эллипса будут различны, смотря по величине скорости v0 . При малых v0 эллипс будет сильно сжатым, его большая ось будет лишь немного больше, чем Cm, и точка С будет находиться в фокусе, далеком от m. Если скорость v0 будет близка к скорости vc , но меньше ее, то эксцентриситет эллипса будет мал, его большая полуось будет лишь немного меньше, чем Cm, точка С приблизится к центру эллипса, но останется в фокусе, далеком от т. Если начальная скорость v0 = vc и будет направлена перпендикулярно к линии Cm, то точка m будет двигаться по кругу радиуса Сm. Если v0> vc , но не превосходит некоторого предела vп = vc , то точка т будет двигаться по эллипсу, но точка С при этом будет находиться в фокусе, близком к m, а большая ось эллипса будет тем больше, чем ближе v0 к vп . Если v0 = vп = vc , то точка т будет двигаться по параболе, обе ветви которой уходят в бесконечность, приближаясь к направлению, параллельному оси Ст. По мере того как точка т будет удаляться от тела М, ее скорость будет стремиться к нулю. Если v0> vп , то точка т будет двигаться по гиперболе, ветви которой уходят в бесконечность и, при очень большой начальной скорости, приближаются к направлению, перпендикулярному к оси Ст. По мере того как точка т будет удаляться по гиперболе, ее скорость будет стремиться к некоторой постоянной величине.
Наконец, в предельных случаях, когда v0 = Ґ, точка т будет двигаться по прямой тb, а когда v0 = 0, то по прямой тС. Скорость v точки т на любом расстоянии r от точки С получается из формулы
(2.18)
где а – большая полуось эллипса. Эта формула называется интегралом энергии. Если точка m движется по кругу, т.е. r = а, то из уравнения (2.18) следует
(2.19)
а если точка m движется по параболе, то а = Ґ и (2.20)
Скорость vc называется круговой скоростью, а vп – параболической скоростью. Скорость эллиптического движения vэ заключена в пределах 0
vп . Гиперболическая орбита определяется теми же
шестью элементами, что и эллиптическая (см. § 41), только вместо большой полуоси
а = Ґ дается перигельное расстояние q. Параболическая орбита определяется пятью элементами: i,
wT . Разность
ускорений wB ѕ wT по величине примерно такая же и направлена также от центра Земли, поскольку wB
150 км). Круговая скорость на высоте h меньше первой космической скорости v1к и определяется из уравнения (2.27) или по формуле . Элементы орбиты ИСЗ зависят от места и времени его запуска, от величины и направления начальной скорости. Связь между большой полуосью а орбиты спутника и его начальной скоростью v0 , согласно интегралу энергии (2.18), определяется формулой где r0 – расстояние точки выхода ИСЗ на орбиту от центра Земли. Обычно запуск ИСЗ производится горизонтально, точнее, перпендикулярно к радиальному направлению. Эксцентриситет орбиты е при горизонтальном запуске равен где q – расстояние перигея (ближайшей точки орбиты от центра Земли). В случае эллиптической орбиты (рис. 35) q = а (1 – е) = R + hП , где hП – линейная высота перигея над поверхностью Земли. Расстояние апогея (наиболее удаленной точки орбиты от центра Земли) Q = a (l + e) = R + hA , где hA – высота апогея над земной поверхностью. Если запуск произведен в перигее (чего может и не быть), то r0 = q = R + hП .
Зависимость формы орбиты ИСЗ от начальной скорости, с которой он выведен на орбиту, показана на рис. 36. Если в точке К спутнику сообщена горизонтальная скорость, равная круговой для этого расстояния от центра Земли, то он будет двигаться по круговой орбите (I). Если начальная скорость. в точке К меньше соответствующей круговой, то спутник будет двигаться по эллипсу (II), а при очень малой скорости по эллипсу (III), сильно вытянутому и пересекающему поверхность Земли; в этом случае запущенный спутник упадет на поверхность Земли, не совершив и одного оборота. Если скорость в точке К больше соответствующей круговой, но меньше соответствующей параболической, то спутник будет двигаться по эллипсу (IV). Примерное расположение эллиптической орбиты спутника в пространстве показано на рис. 37. Здесь i – наклонение орбиты спутника к экватору Земли,
– нисходящий узел, П – перигей орбиты, А – апогей орбиты, ^ – проекция точки весеннего равноденствия на земном экваторе, W – прямое восхождение восходящего узла, w – угловое расстояние перигея от восходящего узла.
Период обращения ИСЗ определяется по третьему закону Кеплера (2.23). Он равен или, если иметь в виду (2.25), Если а выражать в километрах, то при R = 6370 км и g = 981 см/сек2 период обращения спутника получится в минутах из следующей формулы: Основных причин, изменяющих орбиту ИСЗ, две: действие экваториального утолщения Земли и влияние сопротивления атмосферы Земли. Первая причина вызывает вековые возмущения восходящего узла DW и перигея Dw, которые легко учитываются по формулам небесной механики. Вторая причина вызывает уменьшение большой полуоси а, т.е. высоты h, и изменение формы орбиты. Поскольку плотность атмосферы быстро падает с высотой, основное сопротивление и уменьшение скорости спутник испытывает вблизи перигея. Вследствие этого высота апогея орбиты спутника с каждым оборотом заметно уменьшается (высота перигея уменьшается гораздо медленнее). В результате уменьшается большая полуось и эксцентриситет орбиты; орбита спутника постепенно округляется. Когда высота апогея становится сравнимой с высотой перигея, спутник испытывает торможение и теряет свою скорость вдоль почти всей орбиты, уменьшение высоты апогея и перигея происходит еще быстрее, и спутник, приближаясь по спирали к поверхности Земли, входит в плотные слои атмосферы и сгорает. Так как спутник с каждым оборотом снижается, то его потенциальная энергия уменьшается, часть ее переходит в кинетическую энергию. Это приращение кинетической энергии с избытком покрывает энергию движения, которая теряется при торможении. Поэтому скорость спутника не уменьшается, а наоборот, увеличивается, в то время как орбита уменьшается. Следовательно, по мере снижения спутника его период обращения вокруг Земли сокращается. Описанное возмущенное движение спутника дано в первом приближении. В действительности элементы орбиты спутника испытывают более сложные и разнообразные возмущения. Сжатие Земли, отличие гравитационного поля от поля сферически-симметричной притягивающей массы, вызывают не только вековые возмущения долготы восходящего узла
1), но те же возмущения могут возвратить кометы на эллиптические орбиты. Расстояние в афелии у некоторых комет достигает 50 000-100 000 а.е., а период обращения – нескольких миллионов лет. У немногих короткопериодических комет орбиты почти круговые. Наклонения орбит комет также разнообразны и часто превышают 90°, т.е. кометы движутся вокруг Солнца как в прямом, так и в обратном направлении. Движение отдельных метеорных тел очень сложное, но многие из них образуют метеорные потоки, движущиеся по орбитам, подобным орбитам комет. Более детально характеристики тел Солнечной системы будут рассмотрены в гл. X.
§ 69. Движение Земли вокруг Солнца
Так как наблюдатель вместе с Землей движется в пространстве вокруг Солнца почти по окружности, то направление с Земли на близкую звезду должно меняться и близкая звезда должна казаться описывающей на небе в течение года некоторый эллипс. Этот эллипс, называемый параллактическим, будет тем более сжатым, чем ближе звезда к эклиптике и тем меньшего размера, чем дальше звезда от Земли. У звезды, находящейся в полюсе эклиптики, эллипс превратится в малый круг, а у звезды, лежащей на эклиптике, – в отрезок дуги большого круга, который земному наблюдателю кажется отрезком прямой (рис. 45). Большие полуоси параллактических эллипсов равны годичным параллаксам звезд.
Следовательно, наличие годичных параллаксов у звезд является доказательством движения Земли вокруг Солнца. Первые определения годичных параллаксов звезд были сделаны в 1835-1840 гг. Струве, Бесселем и Гендерсоном. Хотя эти определения были не очень точными, однако они не только дали объективное доказательство движения Земли вокруг Солнца, но и внесли ясное представление об огромных расстояниях, на которых находятся небесные тела во Вселенной. Вторым доказательством движения Земли вокруг Солнца является годичное аберрационное смещение звезд, открытое еще в 1728 г. английским астрономом Брадлеем при попытке определить годичный параллакс звезды у Дракона. Аберрацией вообще называется явление, состоящее в том, что движущийся наблюдатель видит светило не в том направлении, в котором он видел бы его в тот же момент, если бы находился в покое. Аберрацией называется также и сам угол между наблюдаемым (видимым) и истинным направлениями на светило. Различие этих направлений есть следствие сочетания скорости света и скорости наблюдателя. Пусть в точке К (рис. 46) находится наблюдатель и крест нитей окуляра инструмента, а в точке О – объектив инструмента. Наблюдатель движется по направлению КА со скоростью v.
Луч света от звезды М встречает объектив инструмента в точке О и, распространяясь со скоростью с, за время t пройдет расстояние ОK = сt и попадет в точку K. Но изображение звезды на крест нитей не попадет, так как за это же время t наблюдатель и крест нитей переместятся на величину KK1 = vt и окажутся в точке K1. Для того чтобы изображение звезды попало на крест нитей окуляра, надо инструмент установить не по истинному направлению на звезду КМ, а по направлению К0О и так, чтобы крест нитей находился в точке К0 отрезка К0К = К1К = vt . Следовательно, видимое направление на звезду К0М' должно составить с истинным направлением КМ угол s , который и называется аберрационным смещением светила. Из треугольника КО К0 следует:
или, по малости угла а, (4.1)
где q – угловое расстояние видимого направления на звезду от точки неба, в которую направлена скорость наблюдателя. Эта точка называется апексом движения наблюдателя. Наблюдатель, находящийся на поверхности Земли, участвует в двух ее основных движениях: в суточном вращении вокруг оси и в годичном движении Земли вокруг Солнца. Поэтому различают суточную и годичную аберрации. Суточная аберрация есть следствие сочетания скорости света со скоростью суточного вращения наблюдателя, а годичная – со скоростью его годичного движения. Так как скорость годичного движения наблюдателя есть скорость движения Земли по орбите v = 29,78 км/сек, то, принимая с = 299 792 км/сек, согласно формуле (4.1), будем иметь s = 20”,496 sin q « 20”,50 sin q. Число k0 = 20”,496 « 20»,50 называется постоянной аберрации. Так как апекс годичного движения наблюдателя находится в плоскости эклиптики и перемещается за год на 360°, то видимое положение звезды, находящейся в полюсе эклиптики (q = b = 90°), описывает в течение года около своего истинного положения малый круг с радиусом 20”,50. Видимые положения остальных звезд
описывают аберрационные эллипсы с полуосями 20»,50 и 20”,50 sin b , где b – эклиптическая широта звезды. У звезд, находящихся в плоскости эклиптики (b =
0), эллипс превращается в отрезок дуги длиной 20”,50 Ч 2 = 41”,00, точнее, 40»,99. Таким образом, самый факт существования годичного аберрационного смещения у звезд является доказательством движения Земли вокруг Солнца. Различие между параллактическим и аберрационным смещением заключается в том, что первое зависит от расстояния до звезды, второе только от скорости движения Земли по орбите. Большие полуоси параллактических эллипсов различны для звезд, находящихся на разных расстояниях от Солнца, и не превосходят 0»,76, тогда как большие полуоси аберрационных эллипсов для всех звезд, независимо от расстояния, одинаковы и равны 20”,50. Кроме того, параллактическое смещение звезды происходит в сторону видимого положения Солнца, аберрационное же смещение направлено не к Солнцу, а к точке, лежащей на эклиптике, на 90° западнее Солнца.
§ 70. Смена времен года на Земле
Наблюдения показывают, что полюсы мира в течение года не меняют заметным образом своего положения среди звезд. Отсюда следует, что ось вращения Земли при движении ее вокруг Солнца остается параллельной сама себе. Кроме того, изменение склонения Солнца в течение года в пределах от + 23° 27' (в момент летнего солнцестояния) до – 23° 27' (в момент зимнего солнцестояния) свидетельствует о том, что ось вращения Земли не перпендикулярна к плоскости орбиты Земли, а наклонена к ней на угол в 66° 33' = 90° – 23° 27’. Следствием движения Земли вокруг Солнца, наклона оси вращения Земли к плоскости орбиты и постоянства этого наклона является регулярная смена времен года на Земле. Расположение Земли и ее