Однако из наблюдений следует, что в действительности количество звезд возрастает с увеличением т не так быстро, а именно, для небольших значений т отношение близко к 3, а с увеличением т оно уменьшается, и для звезд 17m равно, примерно, 2. Если бы светимости всех звезд были одинаковыми, то по наблюдаемому отношению легко было бы определить изменение звездной плотности по мере удаления от Солнца. Действительно, при = 4, с увеличением расстояния в 1,6 раза (что соответствует переходу от звездной величины т к т + 1) звездная плотность была бы постоянна, а при = 3 она убывала бы в отношении 3:4. Наблюдаемое отношение говорит о том, что по мере удаления от Солнца в каждом данном направлении звездная плотность убывает. Если в этом направлении межзвездное поглощение света, о котором мы будем говорить в § 167, несущественно, то можно оценить протяженность нашей звездной системы в этом направлении. В результате оказывается, что Галактика ограничена. Описанный принцип лежит в основе решения значительно более сложной задачи, учитывающей, что в действительности звезды имеют различные светимости, а наблюдения сильно искажены межзвездным поглощением света. Чтобы охарактеризовать, сколько в данной области пространства содержится звезд различных светимостей, вводят функцию светимости j (М), которая показывает, какая доля от общего числа звезд имеет данное значение абсолютной звездной величины, скажем, от M до М + 1. Если бы функция светимости нам была известна, то, несмотря на большую математическую сложность, задача определения звездной плотности на различных расстояниях принципиально ничем не отличалась бы от рассмотренного случая одинаковых светимостей звезд. На практике в звездной астрономии приходится иметь дело с еще большими трудностями и на основании результатов подсчетов звезд находить как функцию светимости, так и зависимость звездной плотности от расстояния в данном направлении. Зная звездную плотность на разных расстояниях и в различных направлениях, можно составить представление о структуре Галактики. На рис. 220 представлена схема общей структуры Галактики. Из него видно, что она действительно является сплюснутой системой, симметричной относительно главной плоскости, называемой плоскостью Галактики. Большой круг, по которому она пересекается с небесной сферой, называется галактическим экватором. Он почти совпадает со средней линией Млечного Пути. Центр этой системы – центр Галактики
– при наблюдении из Солнечной системы проектируется в созвездие Стрельца, в точку с координатами a = 265° и d = –29°. По направлению к центру Галактики, а также по мере приближения к ее плоскости звездная плотность возрастает. Таким образом, распределение звезд в Галактике имеет две ярко выраженные тенденции: во-первых, очень сильно концентрироваться к галактической плоскости; во-вторых, концентрироваться к центру Галактики. Последняя тенденция усиливается по мере приближения к центральной части Галактики, называемой центральным сгущением Галактики или ядром.
Определяя расстояния, на которых происходит существенное падение звездной плотности, получаем представления о размеpax Галактики и о том месте, где примерно находится Солнце. Установлено, что Солнце удалено от центра Галактики на расстояние около 10 000 пс (10 кпс), а ее граница в направлении на антицентр находится на расстоянии 5000 пс от Солнца. Таким образом, диаметр Галактики составляет около 2 (10 000 + 5000) = 30 000 пс или 30 кпс. Точнее указать размеры Галактики нельзя, поскольку по мере удаления от ее центра звездная плотность убывает постепенно и не существует резкой границы. Солнце расположено близ плоскости Галактики и удалено от нее к северу на расстояние около 25 пс. Следующим шагом в изучении Галактики является применение метода подсчета к объектам различного типа с целью найти их распределение в Галактике. Большинство галактических объектов занимает пространство в пределах тонкого плоского слоя. К ним относятся звезды ранних спектральных классов О и В, цефеиды, не принадлежащие шаровым скоплениям, сверхновые звезды второго типа, рассеянные звездные скопления, звездные ассоциации (см. § 164) и темные (пылевые) туманности. О всех этих объектах говорят, что они образуют плоскую подсистему (или составляющую) Галактики (см. рис. 220). К ней концентрируется большинство звезд, образующих звездный диск. Как правило, это все молодые объекты. Однако если из всей Галактики выделить некоторые другие объекты, например, звезды типа RR Лиры, W Девы и m Цефея, сверхновые первого типа, субкарлики и
шаровые звездные скопления (см. § 164), то окажется, что все они занимают объем эллипсоида, для которого галактическая плоскость является диаметральным сечением. Поэтому перечисленные объекты принято относить к сфероидальной (иногда говорят сферической) подсистеме Галактики. Объекты сфероидальной составляющей имеют ярко выраженную тенденцию концентрироваться к центру Галактики. Наконец остальные объекты, например, новые звезды, звезды типа RV Тельца, долгопериодические переменные, белые карлики, звезды спектральных классов С и S, а также планетарные туманности располагаются в пределах более или менее сплюснутых эллипсоидов. Их выделяют в промежуточные подсистемы, так как предельными случаями эллипсоидов их распределения служат обе предыдущие составляющие. Объекты, принадлежащие всем этим подсистемам, различаются также своими кинематическими характеристиками, т.е. средними значениями индивидуальных скоростей. Подобно тому как в более горячей атмосфере газ поднимается на большую высоту, так и в Галактике быстрее движущиеся объекты занимают объем менее сплюснутого эллипсоида. В заключение важно отметить, что некоторые объекты (например, горячие звезды классов О и В) встречаются не всюду в плоскости Галактики, но преимущественно на определенных расстояниях от ее центра, образуя спиральную структуру, подобную структуре туманности Андромеды. Спиральное строение нашей Галактики подтверждается также результатами изучения распределения в ней диффузного вещества и магнитного поля.
§ 164. Звездные скопления
Звездными скоплениями называются группы динамически связанных между собою звезд, содержащие большое количество объектов и отличающиеся своим видом и звездным составом. По внешнему виду звездные скопления делятся на две группы: рассеянные скопления, содержащие несколько десятков и сотен звезд, и шаровые скопления, состоящие из десятков и сотен тысяч звезд. Рассеянные звездные скопления встречаются вблизи галактической плоскости. Всего известно более 800 таких объектов в радиусе нескольких килопарсеков от Солнца. Более далекие рассеянные скопления труднее обнаружить. Учитывая, какую долю объема Галактики занимает область, содержащая известные рассеянные скопления, можно оценить, что всего в нашей звездной системе должно быть несколько десятков тысяч рассеянных звездных скоплений. Наиболее известны рассеянное звездное скопление Плеяды (см. рис. 110), удаленное от нас на расстояние 130 пс, и Гиады, которое находится в сорока парсеках от нас.
Чтобы отделить звезды, принадлежащие скоплению, от звезд поля, случайно проектирующихся в ту же область неба, можно построить диаграмму спектр – светимость. Для скоплений обычно строят диаграмму цвет – видимая звездная величина, откладывая по осям показатель цвета (вместо спектрального класса) и видимую звездную величину которая одинаково для всех звезд скопления отличается от абсолютной. На диаграмме Герцшпрунга – Рессела для рассеянных скоплений, как правило, хорошо заметна главная последовательность. Ветвь гигантов в большинстве случаев отсутствует или почти отсутствует (рис. 221). Поскольку все звезды скопления практически находятся на одинаковом расстоянии, его диаграмма цвет – видимая звездная величина отличается от обычной сдвигом по вертикальной оси на величину модуля расстояния, а из-за влияния межзвездного поглощения света, о котором
будет сказано в § 167, и по горизонтальной оси. Ясно, что звезды, не попадающие
на “свои” места на диаграмме, могут не принадлежать скоплению. Проверить принадлежность этих звезд скоплению можно, изучив собственные движения и лучевые скорости, которые для звезд скопления должны быть примерно одинаковыми. Выделив звезды, принадлежащие скоплению, и найдя нормальное положение главной последовательности, получим модуль расстояния, а следовательно, и само расстояние до звездного скопления. Коль скоро расстояние до звездного скопления установлено, легко вычислить его линейные размеры, которые для большинства рассеянных скоплений в среднем составляют от 2 до 20 пс.
В отличие от рассеянных, шаровые звездные скопления сильно выделяются на окружающем фоне благодаря значительно большему числу входящих в них звезд и четкой своей сферической или эллиптической форме, обусловленной сильной концентрацией звезд к центру (рис. 222). В среднем диаметры шаровых скоплений составляют около 40 пс. Вследствие своей большой светимости шаровые скопления видны на больших расстояниях в нашей Галактике. Поэтому наблюдаемое их число (более 100) близко к общему числу этих объектов в Галактике. Шаровые скопления обнаружены также и в ближайших к нам других галактиках (например, в Магеллановых Облаках, туманности Андромеды). Пространственное распределение шаровых скоплений показывает, что, в отличие от рассеянных скоплений, они образуют сферическую подсистему и сильно концентрируются к центру Галактики.
Диаграмма цвет – видимая звездная величина для звезд шаровых звездных скоплений имеет особый вид (рис. 223). На ней обычно четко выделяется характерная для шаровых скоплений горизонтальная ветвь, ветвь гигантов, соединяющаяся с главной последовательностью, и сама главная последовательность, начинающаяся в области меньших светимостей, чем на обычной диаграмме Герцшпрунга
– Рессела. В шаровых скоплениях часто наблюдается значительное количество переменных звезд, особенно типа RR Лиры, которые позволяют определить расстояния до этих объектов. В 1947 г. В. А. Амбарцумяном и его сотрудниками были обнаружены особые группы звезд, названные звездными ассоциациями. В них входят звезды определенного типа, а их звездна плотность заметно больше средней звездной плотности звезд того же типа в Галактике. Известны два типа ассоциаций. Первый – О-ассоциации – содержит звезды ранних спектральных классов от О до В2. Их. Их размеры составляют десятки и сотни парсеков, т.е. во много pаз превышают размеры рассеянных звездных скоплений. Ассоциации второго типа состоят из звезд типа Т Тельца и поэтому называются Т-ассоциациями.
§ 165. Пространственные скорости звезд и движение Солнечной системы
Если известно собственное движение звезды m в секундах дуги за год (см. § 91) и расстояние до нее r в парсеках, то не трудно вычислить проекцию пространственной скорости звезды на картинную плоскость. Эта проекция называется тангенциальной скоростью Vt и вычисляется по формуле (12.3)
Чтобы найти пространственную скорость V звезды, необходимо знать ее лучевую скорость Vr , которая определяется по доплеровскому смещению линий в спектре
звезды (§ 107). Поскольку Vr и Vt взаимно перпендикулярны, пространственная скорость звезды равна (12.4)
Знание собственных движений и лучевых скоростей звезд позволяет судить о
движениях звезд относительно Солнца, которое вместе с окружающими его планетами также движется в пространстве. Поэтому наблюдаемые движения звезд складываются из двух частей, из которых одна является следствием движения Солнца, а другая – индивидуальным движением звезды. Чтобы судить о движениях звезд, следует найти скорость движения Солнца и исключить ее из наблюдаемых скоростей движения звезд.
Определим величину и направление скорости Солнца в пространстве. Та точка на небесной сфере, к которой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная ей точка – антиапексом. Чтобы пояснить принцип, на основании которого находят положение солнечного апекса, предположим, что все звезды, кроме Солнца, неподвижны. В этом случае наблюдаемые собственные движения и лучевые скорости звезд будут вызваны только перемещением Солнца, происходящим со скоростью V¤ (рис. 224). Рассмотрим какую-нибудь звезду S, направление на которую составляет угол q с вектором V¤. Поскольку мы предположили, что все звезды неподвижны, то кажущееся относительно Солнца
движение звезды S должно иметь скорость, равную по величине и противоположную по направлению скорости Солнца, т.е. – V¤. Эта кажущаяся скорость имеет две составляющие: одну – вдоль луча зрения, соответствующую лучевой скорости звезды Vr = V¤cos q,(12.5)
и другую, – лежащую в картинной плоскости, соответствующую собственному движению звезды, Vt = V¤ sin q.(12.6)
Учитывая зависимость величины этих проекций от угла q, получим, что вследствие движения Солнца в пространстве лучевые скорости всех звезд, находящихся в
направлении движения Солнца, должны казаться меньше действительных на величину V¤. У звезд, находящихся в противоположном направлении, наоборот, скорости
должны казаться больше на ту же величину. Лучевые скорости звезд, находящихся в направлении, перпендикулярном к направлению движения Солнца, не изменяются. Зато у них будут собственные движения, направленные к антиапексу и по величине равные углу, под которым с расстояния звезды виден вектор V¤. По мере приближения к апексу и антиапексу величина этого собственного движения уменьшается пропорционально sin q, вплоть до нуля.
В целом создается впечатление, что все звезды как бы убегают в направлении к антиапексу. Таким образом, в случае, когда движется только Солнце, величину и направление скорости его движения можно найти двумя способами: 1) измерив лучевые скорости звезд, находящихся в разных направлениях, найти то направление, где лучевая скорость имеет наибольшее отрицательное значение; в этом направлении и находится апекс; скорость движения Солнца в направлении апекса равна найденной
максимальной лучевой скорости; 2) измерив собственные движения звезд, найти на небесной сфере общую точку, к которой все они направлены: противоположная ей точка будет апексом; для определения величины скорости Солнца надо сначала
перевести угловое перемещение в линейную скорость, для чего необходимо выбрать звезду с известным расстоянием, а затем найти V¤ по формуле (12.6). Если теперь допустить, что не только Солнце, но и все другие звезды имеют
индивидуальные движения, то задача усложнится. Однако, рассматривая в данной области неба большое количество звезд, можно считать, что в среднем
индивидуальные их движения должны скомпенсировать друг друга. Поэтому средние значения собственных движений и лучевых скоростей для большого числа звезд
должны обнаруживать те же закономерности, что и отдельные звезды в только что рассмотренном случае движения одного только Солнца. Описанным методом установлено, что