заоблачных высот, а управленческий талант ее руководителя привел к таким скачкам на научном поприще, которые полностью стоили потраченных на них усилий»41.

19 октября 1937 г. от ущемления грыжи скончался Резерфорд. Как и полагается пэру (за шесть лет до смерти он был удостоен этого титула), «высокочтимого лорда Нельсона» похоронили со всеми почестями. В гербе Резерфорда нашли отражение как его происхождение, так и научные взгляды. Цитата из Лукреция, соседствующая с изображениями птицы киви, символа Новой Зеландии, и воина маори, гласит: «Primordia Quaerare Rerum» («Познать первопринципы сущего»). Могила с прахом Резерфорда заняла подобающее место в Вестминстерском аббатстве рядом с местами последнего упокоения Ньютона и лорда Кельвина.

Фундаментальные силы - занимательный квартет

Важнейшая цель науки - из наименьшего числа гипотез или аксиом логически получить дедуктивным путем максимум реальных результатов.

Альберт Эйнштейн.

Эссе «Проблемы пространства, эфира и поля в физике» 42

В 1939 г. в строжайшей тайне в Принстон приехал Нильс Бор. Он недавно узнал, что фашистская Германия хочет одной из первых научиться делить ядра урана и других массивных элементов. В воздухе витал немой вопрос, попробует ли Гитлер превратить неконтролируемую энергию атомных ядер в смертельное оружие. Бор вместе с Джоном Уилером пытались лучше изучить ядерное деление и построить модель, как ядро деформируется и разлетается на осколки.

Из уважения Бор посетил одну из лекций Эйнштейна по теории объединения. Эйнштейн там рассказывал о своей новой математической схеме, позволявшей описать гравитацию наряду с электромагнетизмом. Ядерные силы в ней не упоминались, да и к квантовой механике она не имела отношения. Говорят, Бор посреди доклада незаметно вышел. Его, как и почти всех тогда, интересовали теперь другие вещи. На переднем крае науки было атомное ядро.

Ядерная физика в то время перешла в основном в политическую плоскость. Годом ранее Отто Хан - немецкий химик, входивший в группу Резерфорда в Макгилле, - в сотрудничестве с Лизой Мейтнер и Фрицем Штрассманом обнаружил, что ядро одного из изотопов урана можно расщепить, если бомбардировать его нейтронами. Вскоре после этого Мейтнер сбежала от нацистов, которые только что аннексировали Австрию, и принесла весть об открытии своему племяннику Отто Фришу, работавшему с Бором. Бора совсем не обрадовала перспектива того, что фашисты могут благодаря этой находке сделать бомбу. Его беспокойство разделяли и остальные посвященные в тайну. Их тревога возросла еще больше, когда Сцилард и итальянец Энрико Ферми продемонстрировали, что распавшееся урановое ядро испускает новые нейтроны, которые могут попасть по соседним ядрам, расщепить их и запустить цепную реакцию, высвободив таким образом немыслимое количество энергии. Сцилард написал письмо Рузвельту и убедил Эйнштейна тоже под ним подписаться. В итоге был организован «Манхэттенский проект», и Америка взялась за разработку атомной бомбы.

Ядро оставалось тайной за семью печатями. Что его держит? Почему оно распадается, как распадается? Из-за чего одни изотопы менее устойчивы, чем другие? И почему это нейтронов в атомах, как правило, намного больше протонов? Что ядрам природных элементов как будто бы мешает вырасти больше определенного размера? Можно ли в лаборатории создать ядро любого заданного размера?

Одним из первопроходцев, пустившихся на поиски ответов на эти вопросы в смутные годы Второй мировой войны, стал Ферми. Он родился в Риме 29 сентября 1901 г. и с детства прослыл вундеркиндом. Маленький Энрико схватывал математику и физику с молниеносной быстротой. В 10 лет его к себе влекли тонкости геометрических уравнений вроде уравнения окружности. После трагической смерти старшего брата-подростка Энрико по-своему справлялся с горем: с головой ушел в книги, благодаря чему его знания теперь росли не по дням, а по часам. Долго не засиживаясь ни на школьной, ни на университетской скамье, в возрасте 21 года он уже был обладателем докторской степени Пизанского университета. В середине 20-х гг. Ферми успел побывать в Гёттингене, Лейдене и Флоренции, а потом пошел в Римский университет преподавать физику.

Важным вкладом Ферми в ядерную физику и физику элементарных частиц стала в 1933 г. первая математическая модель бета-распада. Ферми к ней подтолкнула гипотеза нейтрино, незадолго до этого впервые публично высказанная Паули на Седьмом Сольвеевском конгрессе. Паули объяснил, что, когда происходит радиоактивный распад ядра в бета-лучи, обязательно должна рождаться ускользающая от экспериментаторов незаряженная и почти невесомая частица, ответственная за недостаток энергии. Ученый сначала ее называл нейтроном, но когда был открыт настоящий, «тяжелый» нейтрон, Паули принял предложение Ферми и решил взять итальянскую уменьшительно-ласкательную форму. А Ферми принялся рассчитывать процесс распада. Хотя в его модели, как потом оказалось, отсутствовали некоторые важные звенья, в ней впервые была приоткрыта завеса над совершенно новой силой природы - слабым взаимодействием. Как раз эта сила вызывает превращения определенных частиц друг в друга, приводя к неустойчивости, например к бета-распаду.

Эмилио Сегре, физик, работавший вместе с Ферми, вспоминал: «Об этой теории Ферми впервые рассказал в кругу друзей, когда мы проводили рождественские каникулы 1933 г. в Альпах. Это было вечером, и все мы сидели на одной кровати в номере отеля; день был целиком отдан лыжам, и я едва мог сидеть тихо - все у меня болело после нескольких падений на фирне. Ферми полностью сознавал, сколь важного успеха он добился, и сказал, что это лучшая его работа и, как он думает, о нем будут помнить по этой работе»43.

В модели Ферми бета-распад представляет собой процесс обмена между частицами, встретившимися в одной точке. Например, протон подходит к электрону и передает ему свой положительный заряд. Сам он при этом становится нейтроном, а электрон превращается в нейтрино. Или же протон может избавиться от своего заряда и стать нейтроном, дав также жизнь позитрону и нейтрино. Есть и третий путь: нейтрон дает протон, а спутниками идут электрон и антинейтрино (античастица нейтрино). В любом случае частицы подходят друг к другу поближе и делают передачу. Это как в футболе: к игроку с мячом подбегает футболист команды-противника, отбирает мяч и удаляется в неизвестном направлении.

В электромагнетизме два электрических тока (потоки зарядов) действуют друг на друга посредством обмена фотонами. Фотон - частица электрически нейтральная, а значит, в процессе взаимодействия передачи заряда не происходит. Благодаря фотонному обмену токи лишь могут начать - в зависимости от направления скорости зарядов - либо притягиваться, либо отталкиваться.

Если говорить на современном языке, фотон - это переносчик электромагнитного взаимодействия. Переносчики, в том числе фотон, относятся к классу частиц под названием бозоны. Мельчайшие кирпичики материи - как нам сегодня известно, это кварки и лептоны - все являются фермионами. Если фермионы - это кости и мускулы тела, то бозоны - это нервные импульсы, запускающие тело в ход.

Что касается слабых сил, Ферми заметил, что два «тока», один из протонов и нейтронов, второй из электронов и нейтрино, в процессе взаимодействия могут обмениваться между собой зарядом и менять свою сущность. То есть Ферми расширил понятие тока с течения движущихся зарядов на поток любых частиц, меняют они в процессе взаимодействия какие-то свои свойства или нет.

Точно так же, как масса служит мерой воздействия силы тяготения, а заряд определяет интенсивность электромагнитных сил, слабая константа связи Ферми (именно он ввел этот множитель) служит мерой слабого взаимодействия. Ферми этим воспользовался, когда выводил метод, известный как «золотое правило» Ферми. Оно позволяет вычислить вероятность реализации конкретного распадного процесса. Так, ни с того ни с сего, в давно сложившуюся компанию гравитационного и электромагнитного взаимодействий вторгся незваный гость. В то время никто не догадывался, как наладить отношения между новеньким и старожилами.

Вы читаете Коллайдер
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату