ударяя по сферическим телам, посылать их к далекой мишени. Проще говоря, набором клюшек для гольфа - неизменными спутниками чуть ли не любого сотрудника тамошней лаборатории ядерной физики. Наставником Гамова в этом спорте стал Джон Дуглас Кокрофт, молодой кавендишский физик и заядлый гольфист.

Кокрофт, родившийся 27 мая 1897 г. в Тодмордене, Англия, шел к занятиям физикой извилистыми путями. У его отца было собственное дело по переработке хлопка, но Кокрофт, как и Резерфорд с Марсденом, текстилю предпочел науку. Он пошел в Манчестерский университет изучать математику, но разразилась Первая мировая война. Кокрофт поступил на военную службу. Вернувшись после демобилизации в Манчестер, ушел в электротехнику и работал по этой специальности. Но по душе она ему не пришлась, поэтому Кокрофт сдал экзамены в колледж Св. Иоанна в Кембридже и так попал в лабораторию к Резерфорду.

Не самая приятная ситуация в гольфе, когда на пути между тобой и лункой появляется откуда ни возьмись холм. Если стремишься, чтобы этот барьер пал, без известной доли размышлений здесь не обойтись: какую клюшку взять, насколько сильно замахнуться… Стоит неуверенно стукнуть по мячу - и недолет гарантирован.

В ядерной физике перед Кокрофтом стояла похожая задача. Ему хотелось так швырнуть частицы в ядро-мишень, чтобы то перешло на более высокий энергетический уровень или, может быть, развалилось на части. Если бы от столкновений оно рассыпалось, по осколкам Кокрофт и его коллеги смогли бы сделать заключение о том, что сидит внутри атома. По-другому это никак не узнаешь. Но между положительно заряженным ядром и частицами с, опять же, положительным зарядом встревал «холм» - электростатическое отталкивание. Природа их так устроила, что они стремятся держаться друг от друга подальше - как северные полюса двух магнитов. Но если между последними стоит холм, то между ядром и положительно заряженной частицей вздымается Эверест.

Как преодолеть это препятствие, Гамову подсказали уравнения. Подставив параметры протонов и альфа-частиц (напомним, это частицы, испускаемые радиоактивными атомами вроде урана) в свою формулу «квантового туннельного эффекта», он обнаружил, что первым нужно в шестнадцать раз меньше энергии, чтобы с тем же успехом проникнуть в ядро. Ответ был очевиден: протоны являются более выгодным снарядом. Если бы их удалось хорошенько разогнать, некоторые из них смогли бы пройти через силовой барьер вокруг атома и попасть прямо в ядро. К чему это приведет, никто не знал, но Резерфорд прислушался к Гамову и заключил, что стоит дать протонам шанс. Это было, пожалуй, единственное серьезное решение, которое Резерфорд принял под влиянием теоретических предсказаний.

Над деталями атомной дробилки тогда уже в полную силу работал талантливый молодой экспериментатор Эрнест Томас Синтон Уолтон. Он родился з октября 1903 г. в ирландском городке Дангарван в семье методистского священника, постоянно переезжающего с места на место. С 1915 г. Уолтон учился в методистской школе-интернате, где у него особенно хорошо шли естественные науки. Закончив ее в 1922 г., он стал студентом колледжа Св. Троицы в Дублине, откуда в 1927 г. вышел уже магистром. Ему присудили «стипендию 1851 г.» для работы в Кембриджском университете, и Уолтон присоединился к кавендишской группе исследователей и вскоре стал одним из незаменимых помощников Резерфорда.

В 1928 г. Уолтон натолкнулся на оригинальную статью норвежского инженера Рольфа Видероэ (1902- 1996), в которой тот рассказывал о своих попытках ускорить частицы с помощью прибора под названием лучевой трансформатор. Идея Видероэ базировалась на фундаментальных понятиях электромагнитной теории. Основу конструкции прибора составляла электромагнитная катушка - свернутый спиралью провод с током, который создает в своих окрестностях магнитное поле. Если менять ток в проводе, то и поле вокруг будет непостоянным. Стало быть, если поднести к катушке другой провод, согласно фарадеевскому закону индукции, переменное магнитное поле возбудит ток и в нем. Но на месте этого провода может быть и вторая катушка. Вместе они образуют трансформатор - знакомое нам устройство для перекачки энергии из одного контура в другой. Чем-то оно напоминает велосипед: вращая педали, мы заставляем крутиться колеса, связывающая их цепь - аналог переменного магнитного поля.

Находка Видероэ состояла в том, чтобы заменить второй контур электронами, разгоняемыми в вакуумном кольце. Чтобы их оторвать от атомов и ускорить, надо было прибегнуть к так называемой электродвижущей силе, порождаемой переменным магнитным полем. А предусмотренный Видероэ центральный магнит должен был заставить электроны бегать по кругу, как автомобили на гоночном треке. К несчастью, испытания нового прибора в университете Аахена в Германии провалились. Ученый обнаружил, что в трубе электроны сбиваются в «островки», оттягивающие на себя энергию с еще бегающих по кругу электронов. Магнит был почему-то не способен поддерживать бесперебойный поток электронов, и Видероэ не мог понять почему. В лучшем случае электроны у Видероэ совершали полтора оборота, а потом прекращали свой бег.

Разочаровавшись в кольцевом ускорителе, Видероэ бросил попытки заставить его функционировать и переключился на другую схему. В 1924 г. из статьи шведского физика Густава Изинга он почерпнул идею линейного ускорителя и даже собрал небольшую, около метра в длину, рабочую модель. Место кольца в ней заняли две «дрейфовые трубки» - прямые, изолированные друг от друга полые цилиндры, из которых откачан воздух. Входя и выходя из них, частицы ускоряются «ударами хлыстом» со стороны электрического поля. Эти толчки идут со строго определенными интервалами, чтобы одной и той же разностью потенциалов дважды сообщить электронам дополнительную скорость: при влете в трубку и при вылете из нее. Электроны словно идут вверх по лестнице, какой ее себе представлял нидерландский художник Мауриц Эшер: только им кажется, что они взобрались наверх, как перед ним вырастают еще ступеньки.

Напряжение - это потенциальная энергия электрического поля, приходящаяся на единицу заряда. Оно показывает, насколько легко частице той или иной массы и заряда ускориться, пройдя путь от одной заданной точки к другой. При прочих равных чем выше напряжение, тем ускорение больше. Другими словами, напряжение показывает, с насколько крутой лестницы скатывается заряд и какую скорость наберет при подлете к нижней площадке.

В установке Видероэ частицы запускались в первую дрейфовую трубку, находящуюся под напряжением в 25 000 вольт. Эта разница потенциалов и заставляла их ускоряться. Пока частицы совершали свой путь внутри трубки, Видероэ выполнял ловкий трюк - обращал разность потенциалов, то есть низкое и высокое напряжение на соседних трубках менял местами. Будучи внутри первой трубки, частицы этого не чувствовали, но едва выскочив в зазор, снова попадали под действие большой разности потенциалов (с высоким начальным и низким конечным напряжением) и ускорялись еще сильнее. В методе Видероэ одно и то же напряжение использовалось дважды, позволяя в два раза повысить эффективность заданного электрического поля, а значит, можно было обойтись сравнительно низковольтной батареей.

На выходе второй трубки Видероэ поставил фотографическую пластинку, которая запечатлевала следы от ударов ускоренных частиц. В первую очередь он пропустил через свою установку - и успешно - ионы калия и натрия. (Чтобы их получить, достаточно было «счистить» с атомов внешние электроны.) Разность потенциалов ускоряла положительно заряженные ионы, и они попадали в фотопластинку. Набрав нужное количество данных, Видероэ описал свои исследования в диссертации, которую защитил в университете Аахена. Диссертацию он опубликовал в журнале, где редактором был его научный руководитель.

Вдохновленный результатами Видероэ, Уолтон в декабре 1928 г. предложил Резерфорду построить в Кавендишской лаборатории линейный ускоритель. Резерфорд давно ждал подходящей возможности соорудить прибор, который помог бы заглянуть внутрь одного из легких элементов, например лития. (Литий занимает третье место в таблице Менделеева, и его ядро, как сейчас известно, содержит три протона и четыре нейтрона.) На следующий месяц перед исследовательской группой с докладом выступил Гамов, представив свою формулу подбарьерного перехода. Кокрофту не терпелось применить ее к случаю бомбардировки протонами ядер лития. Оценки показывали, что понадобится энергия порядка сотни тысяч электронвольт. По человеческим меркам даже 1 МэВ (один миллион электронвольт) безумно маленькая энергия: примерно одна миллиардная от миллиардной доли килокалории. Элементарным частицам уж точно не грозит избыточный вес, но такая порция энергии как минимум устроит им серьезную встряску!

Узнав про эти оценки, Резерфорд вызвал Кокрофта и Уолтона к себе в кабинет. «Постройте мне

Вы читаете Коллайдер
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату