понимавшими, что из этих понятий следует. Один из ярких примеров - Эйнштейн, бывший непримиримым противником матричной механики. Она накинула на атом - да и на всю природу в этих и меньших масштабах - покров неизвестности, провозгласив: не все физические свойства можно измерить за раз.
Со свойственным молодости духом мятежа Гейзенберг начал свое изложение с того, что отринул большинство представлений, безраздельно властвовавших в среде старших. Он отказался воспринимать электрон как летающую по орбите частицу и заменил его чистой абстракцией: математическим состоянием. Чтобы вычислить положение, импульс (массу, умноженную на скорость) и другие наблюдаемые физические свойства, Гейзенберг умножал это состояние на различные величины. Его научный руководитель, геттингенский физик Макс Борн, предложил записывать эти величины в виде таблиц, или матриц. Отсюда термин «матричная механика» (синоним квантовой механики). Вооружившись мощным математическим аппаратом, Гейзенберг уже не видел преград на пути в глубины атома. Потом он вспоминал: «У меня было ощущение, будто через поверхность атомных явлений мне открывается нечто удивительно красивое, и у меня чуть ли не кружилась голова от одной мысли, что мне предстоит окунуться в этот богатый мир математических структур, которые природа так щедро передо мной разложила»24.
В классической физике Ньютона положение и импульс можно измерить одновременно. В квантовой механике, как изящно показал Гейзенберг, дело обстоит совсем не так. Если подействовать на состояние матрицами координаты и импульса, порядок этих операций имеет большое значение. Когда сначала применяешь координатную матрицу, а потом матрицу импульса, ответ, скорее всего, будет другой, нежели в случае, когда делаешь наоборот: сначала импульс, а координаты потом. Операции, где порядок выполнения имеет значение, называются некоммутативными. С коммутативными вариантами мы все хорошо знакомы: в арифметике это умножение и сложение («от перемены мест слагаемых…»). Из-за некоммутативности становится невозможным одновременно узнать обе физические величины с идеальной точностью. Этот факт Гейзенберг сформулировал в форме принципа неопределенностей.
Например, если зафиксировать положение электрона, принцип неопределенностей Гейзенберга в квантовой механике гарантирует, что импульс по максимуму размоется. Но импульс пропорционален скорости, а значит, электрон не может нам сообщить в одно и то же время и где он находится, и с какой скоростью летит. У электрона не то что семь, а неизвестно сколько пятниц на неделе. Если бы планеты вели себя как электроны, древние астрологи забросили бы свое занятие, не успев за него взяться.
Хотя, по Гейзенбергу, квантовой механике по самой ее природе присущи неопределенности, она дает рецепт, как вычислить вероятность. То есть она не гарантирует, что вы выиграете пари, но говорит, каковы ваши шансы. Скажем, квантовая механика дает вероятность того, что электрон из заданного положение перепрыгнет в какое-то другое. Если эта вероятность - ноль, вы знаете наверняка, что такой переход запрещен. Если нет, он разрешен, и в атомном спектре можно будет увидеть линии с соответствующей частотой.
В 1926 г. физик Эрвин Шрёдингер предложил более легкую для понимания версию квантовой механики, так называемую волновую механику. Развивая теорию, построенную французом Луи де Бройлем, Шрёдингер стал интерпретировать электроны как «волны материи». Что-то вроде световых волн, но представленных не электромагнитным излучением, а материальными частицами. Как эти волновые функции реагируют на физические силы, описывает уравнение, носящее имя Шрёдингера. Скажем, в атоме волновые функции электронов под действием электростатического притяжения со стороны ядра образуют «облака» разных форм, энергий и с разной средней удаленностью от центра. Эти облака не имеют материального наполнения. Они лишь показывают, с какой вероятностью электрон окажется в той или иной точке пространства.
Эти волновые структуры можно уподобить колебаниям гитарной струны. На закрепленной с обоих концов струне после щипка возникает стоячая волна. Лежа на пляже, мы видим бегущие волны, которые накатывают на берег. В отличие от них стоячей волне суждено двигаться только вверх-вниз. Но даже при таком ограничении у нее может быть несколько вершин (максимумов): одна, две или больше - главное, что это число должно быть целым, а не дробным. Волновая механика устанавливает соответствие между главным квантовым числом электрона и числом максимумов, что естественным образом объясняет, почему существуют именно эти состояния, а не другие.
К немалому огорчению Гейзенберга, многие его коллеги предпочли картину Шрёдингера. Возможно, потому что волновые процессы были им как-то ближе - проглядывает аналогия и со звуком, и со светом… Матрицы выглядели слишком отвлеченно. Впрочем, проницательный венский физик Вольфганг Паули доказал, что модели Гейзенберга и Шрёдингера полностью эквивалентны. Это как цифровая и аналоговая индикация - ни одна из них не уступает другой, а какую выбрать - дело вкуса.
Паули и сам оставил квантовой механике наследство: представление о том, что два электрона не могут занимать одно и то же квантовое состояние. Принцип запрета Паули привел двух голландских ученых, Самюэла Гаудсмита и Георга Уленбека, к идее о том, что электрон может выстраиваться в двух направлениях, то есть имеет спин. Как подсказывает название (англ.
Электрон - слуга двух господ: обычно он пребывает в смешанном состоянии, где позиции «спин вверх» и «спин вниз» представлены в равных долях. Постойте, как одна и та же частица может обладать двумя взаимоисключающими свойствами? В повседневной жизни стрелка компаса не может одновременно показывать и на север, и на юг, но в квантовом мире свои правила игры. Пока мы не измерили спин, у него, согласно принципу неопределенностей, нет четко заданного значения. Но вот экспериментатор включает внешнее магнитное поле, и тогда электрон поворачивается спином либо вверх, либо вниз - происходит, как говорят, коллапс волновой функции.
Допустим, два электрона идут в связке. Тогда, если у одного спин торчит вверх, другой тут же обращается вниз. Такой переворот имеет место, даже если электроны далеко друг от друга. В этом противоречащем интуиции явлении Эйнштейн усмотрел проделки «призрака дальнодействия». Из-за подобных странных взаимосвязей Эйнштейн был убежден, что когда-нибудь на смену квантовой механике придет более глубокая и более ясная теория.
Что касается Бора, он не открещивался от парадоксов, наоборот, чувствовал себя среди несовместимых понятий как рыба в воде. Например, именно он сформулировал принцип дополнительности, гласящий, что электрон - это одновременно и волна, и частица. Время от времени Бор также был не прочь изречь очередной афоризм. Однажды он сказал: «Глубокая истина - это такая истина, чьей противоположностью тоже является глубокая истина». Полностью в его духе было поместить в самый центр своего герба даосский символ единства противоположностей - инь-ян.
Несмотря на свою непримиримую философскую позицию, Эйнштейн соглашался с Бором в том, что квантовая механика превосходно объясняет экспериментальные данные. Одним из знаков признания ее заслуг было выдвижение Эйнштейном Гейзенберга и Шрёдингера на Нобелевскую премию по физике. Гейзенбергу ее присудили в 1932 г., а Шрёдингер в 1933 г. разделил эту честь с британским специалистом по квантовой механике Полем Дираком. (Эйнштейн и Бор - лауреаты соответственно 1921 и 1922 гг.)
Резерфорд, однако, по-прежнему относился к квантовой теории с настороженностью и основное свое внимание уделял экспериментальным исследованиям атомного ядра. В 1919 г. Томсон сложил с себя звание кавендишского профессора и оставил пост директора Кавендишской лаборатории, а за ним в эту почетную должность вступил Резерфорд. Свой последний год в Манчестере и первые годы после переезда в Кембридж он занимался тем, что бомбардировал различные ядра быстрыми альфа-частицами. Марсден в свое время заметил, что из того места, где альфа-частицы попадают в водородный газ, начинают лететь еще более быстрые частицы с более высокой проникающей способностью. Это оказались ядра атомов водорода. Резерфорд повторил опыты Марсдена, но заменил в них водород на азот. Каково же было его удивление, когда из азота тоже стали вылетать водородные ядра. Правда, сцинтилляции от ядер водорода, попадающих во флуоресцентный экран, не отличались яркостью, и их можно было увидеть только через микроскоп. Но они неоспоримо свидетельствовали о том, что атомы азота могут испускать из своих недр частицы. Открытие радиоактивности продемонстрировало, что атомы могут самопроизвольно превращаться друг в друга (претерпевать трансмутацию), а из экспериментов Резерфорда по бомбардировке вытекала