E-рядах обладают естественным упорядочением, поэтому после того, как установлено соответствие между первыми членами (E1=M1), следующим шагом является установление соответствия между вторыми членами (E2 = M2), и т. д.

Именно такой естественный порядок был необходим Уайлсу, чтобы создать доказательство по индукции. Прежде всего Уайлсу было необходимо доказать, что первый элемент E- ряда можно поставить в соответствие первому элементу некоторого M-ряда. Затем ему было необходимо доказать, что если соответствие между первыми элементами рядов установлено, то оно будет установлено и между вторыми, третьими и т. д. элементами. Уайлсу было необходимо опрокинуть первую кость домино и доказать, что любое опрокинутое домино вызовет падение следующего домино.

Первый шаг в осуществлении этой программы был сделан, когда Уайлс понял всю мощь групп Галуа. Чтобы создать такую группу, можно было воспользоваться несколькими решениями уравнения, соответствующего эллиптической кривой. После анализа, на который ушло несколько месяцев, Уайлс доказал, что группы Галуа позволяют прийти к одному несомненному заключению: первый член любого E-ряда действительно может быть поставлен в соответствие с первым членом некоторого M-ряда. Благодаря теории Галуа, Уайлс сумел сделать первый шаг индукции. Следующий шаг требовал от Уайлса найти способ доказать, что если какой-то один член E-ряда поставлен в соответствие соответствующему члену M-ряда, то и следующий элемент E-ряда должен соответствовать следующему элементу M-ряда.

На преодоление первого этапа, Уайлсу понадобилось два года, и у него не было ни малейшего понятия о том, сколько времени потребуется, чтобы продолжить доказательство. Уайлс хорошо сознавал, какую проблему ему предстоит решить: «Вы можете спросить, как я мог неограниченно тратить время на проблему, которая могла просто оказаться неразрешимой. Ответ заключается в том, что мне очень нравилось работать над ней, я был очень увлечен. Мне нравилось испытывать свой разум. Кроме того, я знал, что та математика, с помощью которой я намеревался атаковать гипотезу Таниямы-Шимуры, позволит получить какой-нибудь интересный результат, даже если ее окажется недостаточно для доказательства гипотезы Таниямы-Шимуры. Я не собирался заниматься безнадежным делом, у меня на вооружении была заведомо превосходная математика. Разумеется, существовала ненулевая вероятность того, что я так и не сумею найти доказательство Великой теоремы Ферма, но я никогда не думал, что напрасно трачу время».

«Доказана ли Великая теорема Ферма?»

Был сделан лишь первый шаг на пути к доказательству гипотезы Таниямы-Шимуры, но избранная Уайлсом стратегия была блестящим математическим прорывом, результатом, который заслуживал публикации. Но в силу обета молчания, наложенного Уайлсом самим на себя, он не мог поведать о полученном результате остальному миру и не имел ни малейшего представления о том, кто еще мог совершить столь же значительный прорыв.

Уайлс вспоминает о своем философском отношении к любому потенциальному сопернику: «Никто не захочет затратить годы на доказательство чего-то и обнаружить, что кому-то другому удалось найти доказательство несколькими неделями раньше. Но, как ни странно, поскольку я пытался решить проблему, которая по существу считалась неразрешимой, я не очень опасался соперников. Я просто не надеялся, что мне или кому-нибудь другому придет в голову идея, которая приведет к доказательству».

8 марта 1988 года Уайлс испытал шок, увидев на первых полосах газет набранные крупным шрифтом заголовки, гласившие: «Великая теорема Ферма доказана». Газеты «Washington Post» и «New York Times» сообщали, что тридцативосьмилетний Иоичи Мияока из токийского Метрополитен университета решил самую трудную математическую проблему в мире. Пока Мияока еще не опубликовал свое доказательство, но в общих чертах изложил его ход на семинаре в Институте Макса Планка по математике в Бонне. Дон Цагир, присутствовавший на докладе Мияоки, выразил оптимизм математического сообщества в следующих словах: «Представленное Мияокой доказательство необычайно интересно, и некоторые математики полагают, что оно с высокой вероятностью окажется правильным. Полной уверенности еще нет, но пока доказательство выглядит весьма обнадеживающим».

Выступая с докладом на семинаре в Бонне, Мияока рассказал о своем подходе к решению проблемы, которую он рассматривал с совершенно иной, алгебро-геометрической, точки зрения. За последние десятилетия геометры достигли глубокого и тонкого понимания математических объектов, в частности, свойств поверхностей. В 70-е годы российский математик С. Аракелов попытался установить параллели между проблемами алгебраической геометрии и проблемами теории чисел. Это было одно из направлений программы Ленглендса, и математики надеялись, что нерешенные проблемы теории чисел удастся решить, изучая соответствующие проблемы геометрии, которые также еще оставались нерешенными[18]. Такая программа была известна под названием философии параллелизма[19]. Те алгебраические геометры, которые пытались решать проблемы теории чисел, получили название «арифметических алгебраических геометров». В 1983 году они возвестили о своей первой значительной победе, когда Герд Фалтингс из Принстонского Института высших исследований внес существенный вклад в понимание теоремы Ферма[20]. Напомним, что, по утверждению Ферма, уравнение

xn + yn = zn

при n бoльших 2 не имеет решений в целых числах. Фалтингс решил, что ему удалось продвинуться в доказательстве Великой теоремы Ферма с помощью изучения геометрических поверхностей, связанных с различными значениями n. Поверхности, связанные с уравнениями Ферма при различных значениях n, отличаются друг от друга, но обладают одним общим свойством — у них всех имеются сквозные отверстия, или, попросту говоря, дыры. Эти поверхности четырехмерны, как и графики модулярных форм. Двумерные сечения двух поверхностей представлены на рис. 23. Поверхности, связанные с уравнением Ферма, выглядят аналогично. Чем больше значение n в уравнении, тем больше дыр в соответствующей поверхности.

 Рис. 23. Эти две поверхности получены с использованием компьютерной программы «Mathematica». Каждая из них представляет геометрическое место точек удовлетворяющих уравнению xn + yn = zn (для поверхности слева n=3, для поверхности справа n=5). Переменные x и y здесь считаются комплексными

Фалтингсу удалось доказать, что, поскольку такие поверхности всегда имеют несколько дыр, связанное с ними уравнение Ферма могло бы иметь лишь конечное множество решений в целых числах. Число решений могло быть любым — от нуля, как предполагал Ферма, до миллиона или миллиарда. Таким образом, Фалтингс не доказал Великую теорему Ферма, но по крайней мере сумел отвергнуть возможность существования у уравнения Ферма бесконечно многих решений.

Пятью годами позже Мияока сообщил, что ему удалось продвинуться еще на один шаг. Ему тогда было двадцать с небольшим лет. Мияока сформулировал гипотезу относительно некоторого неравенства. Стало ясно, что доказательство его геометрической гипотезы означало бы доказательство того, что число решений уравнения Ферма не просто конечно, а равно нулю[21]. Подход Мияоки был аналогичен подходу Уайлса в том, что они оба пытались доказать Великую теорему Ферма,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату