…За «выходом на арену» ЭМБП угрюмо наблюдала могущественная команда сторонников направленных источников РЧЭМИ.
Такие источники создаются на основе вакуумных трубок, в которых движутся электроны. Если движение не равномерно-прямолинейное, оно происходит с ускорением, и, как читатель уже знает, в случае заряженных частиц — с излучением. В виркаторе (рис. 4.60) РЧЭМИ генерируется при колебаниях объемного заряда электронов. Все это возможно лишь в вакууме, где электронам не мешают столкновения с молекулами, но абсолютного вакуума добиться нельзя и, благодаря столкновениям электронов с остаточными частицами в объеме трубки, их поток становится видимым: это — красивое голубоватое свечение.
Но на рис. 4.60 изображен сравнительно маломощный лабораторный макет излучателя, а для генерации РЧЭМИ мощностью в гигаватты нужно много электронов, и эмитгирует их плазма от микроострий, «взрываемых» электрическим полем высокой напряженности. Нужные плотность микронеровностей и проводимость получаются, например, на сломе графита, и, увидев в лаборатории кучу выпотрошенных карандашей, можно предположить, что их грифели использованы в эмиттере. Но главное — надежная изоляция источника: для эмиссии этого типа необходимо напряжение около мегавольта. Изоляция и определяет габариты: кубометры. Отношение энергии импульса РЧЭМИ к объему у источников вакуумной электроники мало (10-6 Дж/см3) [95] , но зато вакуумный излучатель может срабатывать многократно. Малый разброс энергий электронов, узкий диапазон частот позволяют формировать остронаправленное излучение, но всегда будут и боковые лепестки, опасные для системы наведения этого источника.
Ясно, что, чем мощнее оружие, тем больше его габариты, но мастодонты с вакуумными источниками РЧЭМИ превосходят размерами и орудия особой мощности (рис. 4.61), а ограничение, накладываемое пробоем воздуха, не сулит перспектив их уменьшения. Едва способные передвигаться «электромагнитные пушки» быстро обнаружила бы техническая разведка противника, вскрыв замысел операции. К тому же пучок РЧЭМИ не заставишь искривиться, а на прямой наводке такое оружие прозвища «Прощай, Родина» не избежит. Да и поразить противника у него будет немного шансов, потому что если от обычного снаряда защищает броня, то от РЧЭМИ — листва, и полей сражений, где нельзя укрыться в ближайшем кустарнике, найдется немного.
Разработчикам направленных источников и их влиятельным покровителям, понятно, не понравилась оценка в «тысячу длин»: максимальная дальность поражения крылатой ракеты излучателем длиной в 1 м — не более 1 км [96]. Их наиболее сильным контраргументом был такой: в США разрабатываются мощные направленные излучатели РЧЭМИ и предполагается их военное применение — довод скорее эмоциональный, чем рациональный, тем более что дальности поражения ЭМБП электроники в несколько десятков метров были уже привычны военным, а вот сторонникам направленных источников продемонстрировать дальности поражения, даже близкие к километру, не удавалось.
Но не всегда исход противостояния решают, как говаривал Остап Бендер, «медицинские факты», иногда в качестве аргументов идут в ход и мифы. Так, в дни конфликта в Югославии во влиятельной газете «Независимое военное обозрение» можно было прочитать: «На вооружении США — электромагнитные бомбы, разрушительное действие которых сравнимо с электромагнитным импульсом ядерного взрыва. Этот импульс способен вывести из строя всю электронную технику в радиусе десятков километров… Однако из- за маневренных действий югославской ПВО применение данного оружия не зафиксировано». В те дни собеседник с большими звездами на погонах сравнивал радиусы поражения: «у них — десятки километров, а у тебя — десятки метров». Довод, что «их» данные дня источника разумных размеров нереальны из-за пробоя воздуха, был отметен: «Ядерный заряд не намного больше твоих боеприпасов!» Впрочем, оппонент был достаточно эрудирован, чтобы признать: ЭМИ ЯВ исходит не из заряда. Условия его генерации — из плазмоида многокилометровых размеров — куда менее жесткие, чем в ЭМБП. «Ну и создай такой же плазмоид, что тебе мешает?» — последовало далее. Знание числа «жестких» гамма-квантов (1023 на килотонну тротилового эквивалента), испускаемых при ядерном взрыве, позволило по минимуму оценить, что энергии на подобный процесс потребуется на много порядков больше, чем содержится в ВВ, которым может быть снаряжен боеприпас разумных размеров. Энергообеспечение эффекта могло быть только ядерным. Речь зашла о продуктах реакций, радиационных поражениях людей — явных признаках эволюции войны в ядерную — и спор стал увядать. Аргумент, что войскам не страшен ответный ядерный удар даже мегатонного класса мощности, не прозвучал: то, что немыслимая маневренность сербской ПВО существует лишь в фантазиях журналистов, генералу было известно лучше, чем мне.
Часто для отделения зерен от плевел нужен лишь здравый смысл. Например, в газете «Военно- промышленный курьер» № 40, 2004 г., декларировалась способность устройства массой 5 т излучаемой мощностью 500 МВт поражать высокоточное оружие (ВТО) на дистанции 10 км. Через строку — данные о том, что устройство с массой в 1,5 т и на четыре порядка менее мощное (10 кВт) эффективно на дистанции 500 км. Излучение в десятки киловатт типично для РЛС кораблей и самолетов, но ни в авиации, ни на флоте не отмечалось случаев, когда «жгли» друг друга работавшие на расстояниях в 500 км РЛС. Они мирно соседствуют за сотни метров друг от друга на мателотах [97] или на аэродромах.
И за рубежом заинтересованные фирмы время от времени тужились продемонстрировать перспективность военного применения электровакуумных излучателей. В ходе операции «Буря в пустыне» крылатые ракеты, несущие виркаторы, прорывали иракскую ПВО. Энергия для питания источника отбиралась от двигателя ракеты. Маршевый полет при этом невозможен: ракета падала, как только начинал работать источник, зато он успевал «выдать» несколько десятков импульсов излучения. Но и реализация основного преимущества электровакуумного излучателя — способности к многократным срабатываниям — по-видимому, помогла мало, что следовало из унылого: «… Результат не удалось выявить в связи с использованием против РЛС и других средств» (рис. 4.62). Неизвестно, насколько внятно разработчики электромагнитного «Томахока» растолковали военным особенности своего оружия, но изъяны в сценарии боевого применения «резали глаз»: если что и вышло у иракских радаров из строя, так это — приемные тракты, но работать-то на излучение РЛС продолжали, а значит — фиксировались электронной разведкой, как действующие. Выбора у офицеров управления, кроме как добить «Хармами» [98] позицию ПВО, признаков поражения которой они не наблюдали, не было.