Процесс деления U238 — «платный»: прилетающий извне нейтрон должен «принести» с собой энергию более МэВа. A U235 «бескорыстен»: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре (рис. 3.4). При попадании нейтрона в способное к делению ядро, образуется неустойчивый «компаунд», но очень быстро (через 10–23–10–22 секунды) такое ядро разваливается на два осколка, неравных по массе и испускающих новые нейтроны (по 2–3 в каждом акте деления, процесс этот вероятностный), и, благодаря им, со временем может «размножаться» число делящихся ядер — эта реакция называется цепной. В U235 цепь развивается, а кинетическая энергия осколков деления на много порядков превышает выход энергии при любом акте химической реакции, в которой состав ядер не меняется.
Продукты деления нестабильны и еще долго «приходят в себя», испуская излучения самых различных видов, в том числе — те же нейтроны. Короткоживущими осколками нейтроны испускаются спустя 10-6—10-14 секунды после развала компаунд-ядра и такие нейтроны называют мгновенными. Но некоторые нейтроны испускаются через вполне ощутимое человеком время (до десятков секунд). Эти нейтроны называют запаздывающими, доля их по сравнению с мгновенными мала (менее процента).
Свободные нейтроны активно взаимодействуют с любыми ядрами, причем весьма разнообразно. Вероятность взаимодействия описывают «сечениями», измеряемыми «барнами» (барн равен 10- 24 см2), уподобляя то или иное ядро мишени соответствующей площади для летящего нейтрона. Одно и то же ядро может представлять различной площади мишень для разных сценариев взаимодействия: например отскок нейтрона от ядра может быть намного более вероятен, чем его захват ядром с испусканием гамма кванта. Таких сценариев очень много и по совокупности информации о них можно «узнать» то или иное ядро так же точно, как по отпечаткам пальцев — человека.
Образованные делением частицы при многочисленных столкновениях с окружающими атомами отдают им свою энергию, повышая, таким образом, температуру вещества. После того как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а может быть и постоянной. Параметры сборки, в которой число делений в единицу времени не растет, но и не уменьшается, называют критическими. Критичность сборки может поддерживаться и при большом, и при малом числе нейтронов, находящихся в ней в данный момент времени. В зависимости от того, больше или меньше это число, больше или меньше и мощность тепловыделения. Тепловую мощность увеличивают, либо «подкачивая» дополнительные нейтроны извне в критическую сборку, либо делая сборку сверхкритичной (тогда дополнительные нейтроны «поставляют» все более многочисленные «поколения» делящихся ядер).
Образующиеся при делении нейтроны часто пролетают мимо окружающих ядер, не вызывая повторного деления. Чем ближе нейтрон к свободной поверхности, тем больше у него шансов вылететь из делящегося материала и никогда не возвратиться обратно (подумайте, кто из суетящейся у обрыва толпы скорее других свалится в пропасть!). Форма сборки, сберегающей нейтроны в наибольшей мере — шар: для данной массы вещества он имеет минимальную поверхность. Ничем не окруженный (уединенный) шар из 94 %-ного U235 без полостей внутри становится критичным при массе в 49 кг и радиусе 85 мм. Если же сборка из такого же урана — цилиндр с длиной, равной диаметру, она становится критичной при массе в 52 кг, а для длинного цилиндра, с высотой восьмикратно превосходящей диаметр, эта масса превысит 100 кг [41].
Понятно, что внешнюю поверхность сборки можно уменьшить и увеличив плотность ее вещества, поэтому-то взрывное сжатие, не меняя количества делящегося материала, тем не менее, может переводить сборку из докритического состояния в сверхкритическое.
И, наконец, о роли энергии нейтронов. «Отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем «легче» (ближе им по массе) ядра. Чем больше столкновений претерпевают нейтроны, тем более они «замедляются», и, наконец, приходят в тепловое равновесие с окружающим веществом («термализуются»). Скорость «тепловых» нейтронов — 2200 м/с, что соответствует энергии 0,025 эВ. Время термализации (миллисекунды) ощутимо человеком, но важно помнить, что за такое время быстрые нейтроны снижают свою энергию на много порядков, до «тепловых» значений; вразы же они теряют энергию всего за несколько столкновений, что займет доли пикосекунды! Нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с уменьшением энергии их способность вступать в реакции существенно возрастает, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.
Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые, потеряв свою энергию, вернутся в шар («отразятся») и с гораздо большей вероятностью вызовут акты деления (рис. 3.4). В процессе обмена нейтронами между замедлителем и делящимся веществом установится усредненная, пониженная в сравнении с той, с которой они рождаются, энергия нейтронов, вызывающих деление. Если шар окружить слоем бериллия толщиной 25 мм, то можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Заплатить за такую экономию придется временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка уменьшает число поколений нейтронов, рождающихся в единицу времени, а значит, энерговыделение «затягивается». Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития в ней цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на совсем уж тепловых, например, в растворе солей урана в воде [42], масса сборок — сотни граммов, но раствор просто периодически вскипает. Выделяющиеся в объеме пузырьки пара уменьшают среднюю плотность делящегося вещества, и цепная реакция прекращается. Затем пузырьки, всплывая, покидают жидкость и вспышка делений повторяется. Можно, конечно, закупорить сосуд, и тогда пар высокого давления разорвет его. Это будет типичный тепловой взрыв, опасность которого заключается не в мощности, а в радиационных эффектах.
Вот как описан в книге Р. Юнга «Ярче тысячи солнц» закончившийся трагично эксперимент доктора Слотина, правда, не с ураном, а другим делящимся веществом — плутонием (рис. 3.5).