пространстве двух последних рядов необходимо привести в нормальное положение (схема I) шашки 9 и 13: это тоже всегда возможно, в чем нетрудно удостовериться. Из всех приведенных в порядок шашек 1, 2, 3, 4, 5, 6, 7, 8, 9 и 13 ни одной не перемещают в дальнейшем; остается небольшой участок в 6 полей, в котором одно свободно, а пять остальных заняты шашками 10, 11, 12, 14, 15 в произвольном порядке. Легко, однако, убедиться, что в пределах этого шестиместного участка всегда можно привести на нормальные места шашки 10, 11, 12, и когда это достигнуто, то в последнем ряду шашки 14 и 15 окажутся размещенными либо в нормальном порядке, либо в обратном (схема II). Таким путем, — который здесь был лишь намечен и который читатели легко могут испытать и проверить на деле, — мы приходим к следующему результату.
Любое начальное положение может быть приведено либо к нормальному схемы I, либо к конечному схемы II.
Схема II
Это значительно упрощает задачу: все необозримое разнообразие положений шашек сведено к двум типичным схемам I или II, так что приходится иметь дело лишь с этими двумя. Если некоторое расположение, которое для краткости обозначим буквою
Итак, мы имеем две серии расположений, таких, что положения одной серии могут быть переведены в «нормальное» I, а другой серии — в положение II. И наоборот, мы уже видели, что из «нормального» расположения можно получить любое положение первой серии, а из расположения схемы II — любое положение второй серии. Наконец, два любых расположения, принадлежащие к одной и той же серии, могут быть взаимно переводимы друг в друга: если оба относятся, например, к первой серии, то это значит, что одно из них может быть переведено в положение схемы I, а положение схемы I переводится в другое из данных двух положений; короче — одно данное положение переводимо в другое, и наоборот.
Возникает вопрос: нельзя ли идти дальше и объединить эти два типичных расположения — схем I и II? Это было бы возможно, если бы одно из них переводилось каким-нибудь образом в другое. Тогда обе серии расположений естественно слились бы в одну. Сопоставляя друг с другом расположения схем I и II, можно строго доказать (не станем входить здесь в подробности), что положения эти не могут быть превращены одно в другое никаким числом передвижений. Это — огонь и вода. Поэтому все огромное число размещений шашек распадается на две разобщенные серии: 1) на те, которые могут быть переведены в «нормальное» схемы I: это — положения
Но как узнать, принадлежит ли заданное расположение к первой или второй серии? Пример разъяснит это.
Рассмотрим представленное здесь расположение.
Первый ряд шашек в порядке, как и второй, за исключением последней шашки (9). Эта шашка занимает место, которое в «нормальном» расположении принадлежит 8. Шашка 9 стоит, значит, «ранее» шашки 8; такое упреждение нормального порядка будем называть «инверсией». О шашке 9 мы скажем: здесь имеет место «одна инверсия». Рассматривая дальнейшие шашки, обнаруживаем упреждение для шашки 14; она поставлена на три места (шашек 12, 13, 11) ранее своего нормального положения; здесь у нас 3 инверсии (14 ранее 12; 14 ранее 13; 14 ранее 11). Всего мы насчитали уже 1 + 3 = 4 инверсии. Далее шашка 12 помещена ранее шашки 11, и точно так же шашка 13 — ранее шашки 11. Это дает еще 2 инверсии. Итого имеем, таким образом, 6 инверсий. Подобным образом для каждого заданного расположения устанавливают «общее число инверсий», освободив предварительно последнее место в правом нижнем углу. Если общее число инверсий, как в рассмотренном случае,
За недостатком места мы должны отказаться от строгого доказательства всего изложенного. Но можно наметить кратко главные этапы в ходе этого доказательства. Среди ходов будем различать «горизонтальные» и «вертикальные» (смысл этих слов, конечно, ясен). Легко видеть, что всякий «вертикальный» ход изменяет число инверсий либо на 1, либо на 3, т. е. на нечетное число. Чтобы одно положение шашек перевести в какое-либо другое, необходимо сделать
Поучительной в этой игре является и ее история. При своем появлении игра вызвала всюду, как мы уже рассказывали, сильнейшее, прямо лихорадочное возбуждение и породила настоящую манию игры. С этой лихорадкой удалось справиться только математике. И удалось ей это так полно, что в наши дни подобная страстность в этой игре уже совершенно немыслима. Победа достигнута была благодаря тому, что математика создала исчерпывающую теорию игры, теорию, не оставляющую в ней ни одного сомнительного пункта и превратившую ее в образчик настоящей математической игры. Исход игры зависит здесь не от каких-либо случайностей и даже не от исключительной находчивости, как в других играх, а от чисто математических факторов, предопределяющих исход с безусловной достоверностью.[37]
Примечание редактора
Иллюстрация, приведенная в начале этой статьи, помещена в любопытной книге Сэма Лойда «Энциклопедия головоломок» (Нью-Йорк, 1914). Это большой том, заключающий 5000 разнообразных задач и развлечений, из которых тысяча иллюстрирована. Рисунок интересующей нас игры сопровождается следующим текстом.
«Давнишние обитатели царства смекалки помнят, как в начале 70-х годов я заставил весь мир ломать голову над коробкой с подвижными шашками, получившей известность под именем „игры в 14–15“. Пятнадцать шашек были размещены в квадратной коробочке в правильном порядке, и только шашки 14-я и 15-я были переставлены, как показано на прилагаемой иллюстрации. Задача состояла в том, чтобы, последовательно передвигая шашки, привести их в исходное положение, причем, однако, порядок шашек 14-й и 15-й должен быть исправлен.