Это вносит прежде неизвестные черты в само устройство нашего знания. Вот как оборачивается проникновение в глубины материи…
Бору радостно, а не тревожно было всматриваться в формулу неперестановочности умножения матриц. Снова совсем, как по Андерсену: из гадкого утенка она превращалась на глазах в стройного лебедя. Или прозаически: из нелепости — в ручательство за надежность найденного Гейзенбергом пути.
И Гейзенбергу потом не раз доводилось улыбаться со смесью гордости и смущения, когда он вспоминал, как утешил себя на Гельголанде: «К счастью, мне не понадобится такое умножение, к счастью, это не очень существенно…»
Конечно, и в матричном варианте механики микромира, как и в волновом, глубинные законы природы раскрывали свою вероятностную суть. Стоит чуть продолжить условное сравнение квадратных матриц с турнирными таблицами, чтобы это отчасти прояснилось.
Надо сыграть матч, дабы проставить в таблице определенный счет. Есть ли смысл в утверждении, что он существовал еще до игры? До игры существовала лишь перспектива любых исходов. Только одни были менее вероятными, а другие — более вероятными. Но ничего категорически однозначного не предрек бы никто, даже компьютеры, которым прогнозисты оставляют право на ошибку в сносных пределах.
Не так ли и в механике наблюдаемых величин? Надо сыграть матч — провести измерение, чтобы наблюдаемая величина стала наблюденной. На языке диалектической логики: чтобы возможное превратилось в действительное. А до этого решительно ничего однозначно точного вычисления не говорят.
Соблазнительно думать, что они, измеренные значения, допустим, координаты и скорости электрона, реально существовали и до измерения. Соблазнительно, но простодушно. Убежденность в этом не имеет физического смысла. Не найти ответа на скромный вопрос: а откуда вам это известно?
Естественно, в механике наблюдаемых величин, как и во всей микрофизике, нет места сомнению, что электрон существует до и независимо от нашего наблюдения (в противном случае не о чем было бы разговаривать и незачем было бы затевать измерения). Но без измерения квантовая механика откажется, например, точно судить о местоположении электрона.
Негодующе оспаривать этот отказ — дело безрадост ное. И бесплодное. Да ведь и вправду: электрон — не классическая корпускула, а частица–волна, со всеми вытекающими из этого факта и уже понятными нам, «неприятными» последствиями. (И неважно, что автору механики наблюдаемых величин не нравился этот двойственный образ!)
Двадцать с лишним лет спустя, уже после второй мировой войны в 1949 году, группа наших физиков во главе с Валентином Александровичем Фабрикантом поставила красивый эксперимент.
Еще прежде в лабораториях не раз проводился простой опыт: непроницаемый экран с маленьким отверстием — за экраном фотопластинка, — сквозь дырочку в экране на нее устремляется прямо летящий пучок электронов — исследуется почернение пластинки. Что получится?
Классически, следовало ожидать, что появится черное пятнышко прямо напротив отверстия в экране, и только. Когда бы электроны были обычными шариками, ничего другого не могло бы произойти. С небольшим разбросом они падали бы на одно и то же место.
Физики–квантовики ожидали появления иной картины, гораздо более интересной. За отверстием должна была проявиться волнообразность поведения проскочивших на свободу электронов. На пластинке следовало запечатлеться картине пересечения электронной волны с плоскостью эмульсии. Там, где на это пересечение придутся гребни волны, пластинка засветится, а там, где нулевые амплитуды, почернения не будет. В общем, от черного пятнышка посредине — напротив отверстия — должны расходиться чередующиеся светлые и темные кольца.
Так оно и получилось!
Но даже такие броские опыты не поколебали сомневающихся и не избавили идею вероятностного мира от хождения по мукам, начавшегося в 26–м году. И не один Эйнштейн обрекал ее на эти муки. А были они, в сущности, испытанием на прочность.
Среди многих сомнений очень долгоживущим явилось такое: а не есть ли вероятностная картина распределения зачерненных мест от падения электронов свойство их пучка — их громадного по численности потока, а вовсе не каждого электрона в отдельности?
Наши экспериментаторы решили в 49–м году провести опыт с отверстием в экране совсем по–другому, чем это делалось раньше.
Они пустили электроны не потоком, а поочередно. Не толпою, а гуськом. Пусть каждый электрон, решили они, проходит через отверстие и падает на экран независимо от других. Если и на сей раз прорисуется на пластинке волновая картина, не останется экспериментальных сомнений, что свойства пучка тут ни при чем.
Все было сделано так, что электроны падали, как редкие капли из крана, прикрученного не до конца. Интервал между двумя падениями был в 30 тысяч раз продолжительней, чем время, какое требовалось электрону на пролет через всю опытную установку — от источника до пластинки. Ни один электрон «ничего не знал» о других— не был частицей толпы, и она не могла влиять на его поведение. И все–таки возникла на пластинке волнообразная череда темных и светлых колец.
Каждый электрон мог воспользоваться — и воспользовался! — какой–нибудь одной из вероятностей упасть не только прямо против отверстия. А все вместе использовали все вероятности, потому что их было для этого достаточно много.
Остроумный опыт. Поразительно, однако, что физикам захотелось его провести через столько лет после победы квантовой революции. Не значит ли это, что она продолжалась? Еще бы! Столкновения идей и страстей никогда не прекращались надолго. А может быть, им вообще не суждено затихнуть когда–нибудь окончательно: с классической макроприродой нашего воображения нам ничего не поделать.
Легко представить, какими же бывали эти столкновения в 20–х годах — в ту начальную пору!
Кончалось лето 26–го года. В Мюнхене происходил теоретический семинар у Зоммерфельда. Выступал приехавший из Цюриха Эрвин Шредингер. А среди слушателей был Вернер Гейзенберг. Он проводил в родительском доме остаток летних каникул. Случай, кажется, впервые, свел лицом к лицу создателей обоих вариантов квантовой механики.
Не было особой неожиданности в том, что на семинар пришел даже директор института экспериментальной физики стареющий Вилли Вин. Хотя он был откровенным противником квантовых новшеств, его неприязнь не распространялась на волновую теорию гостя из Швейцарии.
Вилли Вину принадлежала одна известная и в свое время очень важная формула в доквантовой теории излучения. И теперь ему казалось, что Шредингер возвращает физике, наконец, доквантовую непрерывность под старым девизом: «природа не делает скачков!» А идеи механики частиц и скачков, придуманной бывшим мюнхенским студентиком Гейзенбергом, были ему до крайности неприятны и неугодны.
В 1963 году вдова Шредингера фрау Аннамари вспоминала в беседе с историками, что вообще «старые люди» одобрительно встретили волновые идеи ее мужа, а «молодые люди» — нет…
В Мюнхене молодой Гейзенберг позволил себе запальчиво высказаться об излишнем доверии Шредингера к волновым пакетам и начал было критиковать его за генерализацию волн. А Вилли Вин еще помнил, как три года назад этот выпускник университета не смог ответить ему на экзамене, что такое разрешающая сила микроскопа (!). Лишь благодаря заступничеству Арнольда Зоммерфельда незрелый юнец все же получил тогда степень доктора философии. Теперь же этот невежественный школяр критиковал как равный цюрихского профессора.
Негодующий Вин вскочил, забыв о своем возрасте, и прокричал, вспомнив о своем чине:
— Молодой человек, вам еще надлежит учиться физике, и было бы лучше, если бы вы изволили сесть на место!
Сверх того он добавил, что ему, конечно, понятны чувства недоучки, ибо волновая механика поставила крест над таким вздором, как квантовые скачки, но настаивать на возникающих трудностях с волновыми пакетами бестактно: