детерминированное движение». В переводе с философского языка: строго определенное — классическое.

Он жаловался на непреодолимые математические трудности. Они обступили его, когда он попытался сделать свою теорию обоснованней — тоньше и правдивей. Но не потому ли те трудности и оказались непреодолимыми, что в самом замысле не было правды природы?

Еще летом 1926 года эту правду первым уловил, или уж во всяком случае первым доказательно выразил, Макс Борн.

3

Можно недоверчиво пожать плечами… Как же так? Ведь не кто иной, как Макс Борн, распознавший в гейзенберговских квадратных таблицах известные математикам матрицы, с минувшего лета 25–го года разрабатывал аппарат матричной механики — механики частиц и скачков. Ведь это он вместе со сверходаренным своим ассистентом только что — весной 26–го — стал мишенью веселых насмешек Гильберта за пренебрежение добрым советом поискать волновое уравнение для матриц. И вдруг, именно ему такая участь и честь: стать первооткрывателем физического смысла пси–волн!

Проще всего, конечно, отговориться обычной фразой: еще один каприз истории — и вся недолга… Но дело было глубже.

Максимализмом молодости уже немолодой геттингенский профессор — ему было тогда сорок три — не страдал. Односторонних пристрастий своего ассистента не разделял. И после появления механики Шредингера он, Макс Борн, начал с верой в успех исследовать столкновения микрочастиц, обратившись к помощи волнового уравнения.

Короче: он проявил широту понимания и отверг сектантскую узость. За это и был вознагражден глубоким открытием. Но сначала ему пришлось выслушать обвинение «в измене духу матричной механики». В измене, не меньше! Ясно, что обвинителем стал Гейзенберг.

— Однако вскоре он опомнился, — добавил Бори, вспоминая этот эпизод, — и нашел удивительный способ примирить корпускулярную и волновую картины…

Об этом способе рассказ еще впереди. А чем же волновая механика соблазнила Макса Борна?

Раньше всего остального, привычной доступностью ее математического аппарата: уравнения… непрерывность… Все, как бывало прежде… Этим она подкупала всех. Даже многим классикам она приглянулась своей математической обыкновенностью. Иные из них восприняли ее как обещание близкого возврата к классическим представлениям. Но «измена» Борна так далеко, конечно, не заходила: он вовсе не собирался в угоду Шредингеру пожертвовать частицами и квантовыми скачками. Забавно, как он это объяснял впоследствии:

«Это было связано с тем, что мой институт и институт Джеймса Франка были расположены в одном здании Геттингенского университета. Каждый эксперимент Франка и его учеников по столкновению электронов казался мне новым доказательством корпускулярной природы электрона».

Впору подумать, что если бы экспериментаторы работали в другом здании, чуть подальше, электрон перестал бы казаться Максу Борну частицей… А все–таки это живое соседство с экспериментаторами, видимо, и впрямь явилось для него немаловажным психологическим подспорьем, когда воображение хотело сохранить образ корпускул нерушимым. Даже в краткой нобелевской речи — почти тридцать лет спустя — Макс Борн нашел место для лирического воспоминания о том, как щелкали счетчики Гейгера, регистрируя импульсы электронов, и как прочерчивались в камере Вильсона ниточки тумана, показывая воочию электронные треки.

Это микрокентавры неоспоримо демонстрировали теоретику свою корпускулярность. А волнообразность?

В той же речи Макс Борн рассказал и о волнообразности. Он вспомнил, как в 25–м году они с Джеймсом Франком подметили в картине прохождения электронов через кристаллы черты волнового поведения: огибание узлов кристаллической решетки — дифракцию! Они тотчас поручили тогда своему общему ученику молодому Эльзассеру повнимательней присмотреться к этому явлению…

Так, близкое соседство с экспериментаторами давало теоретику психологический стимул и для сохранения верности образу волн.

Эта сдвоенная верность не была у Макса Борна платонической: «…соударение одних частиц с другими я рассматривал как рассеяние волн…» Оттого и рассердился на него Гейзенберг летом 26–го года. Но победила непредвзятость. В ходе того исследования Борну и раскрылся смысл величины «пси».

Еще у него было преимущество благодарной памятливости. Он не забывал одной старой конструктивной догадки Эйнштейна, и это ему помогло.

В том же 26–м году удостоились, наконец, крещения световые кванты — эйнштейновские частицы света: физико–химик Дж. Ньютон Льюис назвал их фотонами. И это имя сразу укоренилось. Окончание «-он» хорошо подчеркнуло их корпускулярность — по сходству с микрокрупицами вещества, электроном и протоном. Подчеркнуть надо было именно корпускулярность, ибо на протяжении тех двадцати лет, что они уже существовали в картине микромира, их волновая — электромагнитная — природа ни у кого сомнений не вызывала. И Эйнштейн должен был с самого начала, впервые заговорив о них в 1905 году, дать ответ на естественно возникавший вопрос: если свет состоит из частиц, то о чем ведут рассказ электромагнитные волны?

Не обойтись без повторения: длины этих волн, или частоты колебаний, рассказывали об энергии каждого кванта. А впадины и горбы, или амплитуды электромагнитных волн? О чем рассказывали они, если от них зависела яркость — интенсивность — света? Ответ был прост и логичен: там, где яркость больше, там больше квантов — там их плотность выше. Об этом и говорит высота — амплитуда — электромагнитных волн.

Совершенно тот же вопрос волновал теперь Макса Борна: о чем ведут рассказ пси–волны с их впадинами и горбами, раз уж с этими волнами связано поведение частиц? Пришедшая на память мысль Эйнштейна подсказала ответ. И Макс Борн потом не раз с благодарностью вспоминал об этом.

Кажется, дело вполне заурядное — каждый теоретик держит в памяти то, что было сделано на ту же тему до него. Да, но надо было понять, что мысль Эйнштейна отражала ту же тему. А это не лежало на поверхности. Совсем напротив. Ведь ничего не получалось из стремления Шредингера увидеть в частицах некие кванты, сотканные из его пси–волн. Никаких «псионов» — в параллель с фотонами — не могло существовать. И потому в мысли Эйнштейна о роли горбов и впадин электромагнитной волны еще надо было усмотреть полезную подсказку для совсем другого по своей природе случая. А угадав эту подсказку, следовать ей без опрометчивости, дабы получить свой ответ на очень похожий вопрос.

Простейшим выглядел такой ответ: там, где поднимается гребень пси–волны, там и находится в данный момент частица. Но работала Эйнштейнова подсказка: а почему обязательно там и только там; разве в тех местах, где проходит не горб, а скат электромагнитной волны, совсем нет света? В таких местах его яркость меньше, однако же фотоны есть и там. Их меньше, но они есть. Отчего же не предположить, что и на скате пси–волны можно застать электрон? (Или, разумеется, любую другую микрочастицу, чье поведение изучается на сей раз .)

Появляется даже искушение подумать так: на гребнях пси–волны самой плоти электрона больше, а на скатах — меньше. Она, эта плоть, распределена — размазана — по всему пространству, где проходит пси– волна, описывающая поведение электрона: где горб — погуще, где скат — пожиже. Но тогда исчезает электрон как частица!

Недаром такому соблазну поддался все тот же Шредингер: идею волновых пакетов он заставлял служить подобной картине расплывшегося по всему атому электрона. «В этом я не мог ему следовать», — говорил Макс Борн.

Он следовал Эйнштейну, а Эйнштейн не размазывал световой квант по всей электромагнитной волне, ибо тогда незачем было бы и разговаривать о частицах света.

Нет, электрон как целое можно застать и там, где у пси–волны гребень, и там, где у нее скат. А «больше» и «меньше» относятся не к корпускулярной плоти электрона, а к его поведению: где у пси–волны

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату