Как известно, природный лютеций состоит из двух изотопов — стабильного 175 Lu (около 97,5 %) и бета-активного 176 Lu с периодом полураспада 20 миллиардов лет. Искусственным путем было получено еще несколько радиоактивных изотопов этого редкоземельного элемента с периодами полураспада от 22 минут до 500 дней. До недавнего времени самым 'молодым' из них считался изотоп 166 Lu, 'найденный' в 1968 году учеными Объединенного института ядерных исследований (ОИЯИ) в Дубне. И вот недавно там же в результате бомбардировки высокоэнергичными протонами мишеней из вольфрама и тантала на свет появилось еще четыре изотопа лютеция с массовыми числами 158, 160, 161 и 163. Периоды полураспада 'новорожденных' измеряются десятками секунд.
Загадка индия
Исследуя с помощью электронного микроскопа мельчайшие частицы индия, канадские физики обнаружили, что, когда размер частиц этого металла становится меньше некоторой величины, температура плавления его резко понижается. Так, если размер частиц не превышает 30 ангстрем, то они плавятся при температуре чуть выше 40 °C, в то время как обычно это происходит при 156 °C. Такой колоссальный скачок представляет для ученых несомненный интерес. Но природа этого эффекта даже для видавшей виды современной физики пока остается загадкой: ведь теория процессов плавления разрабатывалась применительно к большим массам вещества, а в опытах канадских физиков расплавлялись 'гомеопатические' дозы индия — всего несколько тысяч атомов.
К чему приводит возбуждение
Несколько лет назад физики Билефельдского университета (ФРГ) выполнили интересный эксперимент, который длился всего десятую долю секунды, хотя подготовка к нему заняла два года.
На специально созданной установке ученые подвергли атомы цезия бомбардировке сфокусированным импульсом мощного лазера. В ответ на столь 'грубое вмешательство' орбиты электронов растянулись и атом пришел в состояние высшего возбуждения. Он 'располнел' в десятки тысяч раз и на мгновение стал величиной с бактерию.
Атомы 'кузнечики'
Прогресс современной науки о металлах немыслим без проникновения в самые недра материи. Несколько лет назад А. Креве, профессору физики Чикагского университета имени Энрико Ферми, удалось сфотографировать отдельные атомы урана и тория. Продолжая исследования, ученый довел технику своих экспериментов до необычайно высокого уровня и сумел с помощью электронного микроскопа снять фильм о движении этих атомов. Любопытно, что 'герои' фильма перемещаются не непрерывно и равномерно, а прыгают, словно кузнечики, с одного места на другое.
Сейчас Креве, 'изменив' урану и торию, намеревается сфотографировать атомы некоторых легких элементов (с атомной массой до 20). Такие снимки представят огромный интерес для изучения роста кристаллов, протекания химических реакций и других процессов.
В одиночку и парами
Новый цветной фильм, созданный в США, не дал огромных кассовых сборов, однако для определенного круга людей он представил несомненный интерес. Речь идет о фильме, снятом физиками Чикагского университета. Главные действующие лица этого 'боевика' — атомы урана, платины, серебра, золота и других металлов.
Уникальные съемки стали возможными благодаря изобретению, позволившему соединить электронный микроскоп с кинокамерой. Движение атомов сначала было зафиксировано на черно-белой пленке, а затем и на цветной. Оказалось, что одни атомы снуют взад-вперед, другие описывают широкие круги, а третьи предпочитают 'гулять' парами.
Пока не удалось научно объяснить, чем вызвано такое различие в характере движения тех или иных атомов.
Металловедческий комбайн
Чтобы выполнить всестороннее исследование свойств нового сплава, металловедам приходится провести десятки испытаний на различных приборах, снять сотни показаний, обработать и проанализировать их, проделать порой сложные расчеты. Кроме того, для подобного исследования надо иметь немалое количество 'подопытного' сплава, а ведь он может быть дорогим или дефицитным. Короче говоря, требуется много времени, много приборов, много испытуемых образцов.
А нельзя ли усовершенствовать и упростить эту сложную и кропотливую работу? Такую задачу поставили перед собой ученые лаборатории редких металлов Института металлургии имени А. А. Байкова Академии наук СССР. Поставили — и решили. Им удалось сконструировать универсальную машину для комплексного исследования металлов и сплавов — своеобразный металловедческий комбайн, в котором значительный объем работ переложен на 'плечи' ЭВМ.
Используя образцы небольшого размера, комбайн выдает огромную информацию о металле или сплаве: величину теплового расширения, температуру плавления, данные об электропроводности, об изменении структуры в широком диапазоне температур. Поскольку в деле 'замешана' электроника, на самый сложный вопрос можно получить точный и быстрый ответ.
Склеивает… металл
Английские ученые разработали оригинальный способ соединения мелких деталей при помощи… металлического 'клея'. Для этого детали, которые нужно 'склеить', вставляют в специальную оправу, а ее, в свою очередь, — в устройство, напоминающее машину для литья под давлением. После этого в оправу, одновременно в несколько мест, впрыскивают мельчайшие дозы расплавленного металла — 'клея', в роли которого выступает сплав на основе свинца или цинка. Проходят считанные секунды — и детали оказываются прочно соединенными друг с другом.
Новый способ позволяет надежно 'склеивать' изделия и детали не только из металлов, но и из керамики, нейлона, картона (пропитанного антипиренами) и других материалов.