случайных последовательностях, мы видим порядок и паттерны там, где их нет.
«Горячая» рука (везение в игре)
Каждый баскетболист, тренер и болельщик знают, что игроки с «горячей» рукой редко промахиваются, а те, у кого рука «холодная» испытывают колебания перед броском. Вот что они сами говорят по этому поводу:
• «Мы видим парней с 'горячей' рукой, а у Джеффа — 'горячая' рука, объяснял тренер команды Университета Кентукки Табби Смит, награждая Джеффа Шеппарда за три последовательных броска, принесших команде по три очка, что помогло этой команде подняться вверх во время чемпионата
• «Вы никогда не знаете наверняка, у кого окажется 'горячая' рука, — объясняла тренер из Северной Каролины Сильвия Хэтчелл после того, как ее команда нанесла поражение команде Алабамы. — Сегодня таким игроком была Джуанна, и я велела игрокам передать ей мяч. Это не хорошая работа тренера — это просто здравый смысл».
• «Когда у игрока 'горячая' рука, вы захотите передать мяч ему, и парни много работают над тем, чтобы найти такого человека», — объяснил тренер одной школы после того, как звезда его команды «совершенно бессознательно» забросила мяч в кольцо.
• «Вас просили найти парня с 'горячей' рукой, а не такого, который промахивается», — писал редактор спортивной колонки в нашей местной газете, критикуя тренера баскетбольной команды Колледжа Надежды, после того, как эта команда проиграла со счетом 0:10 в овертайме.
• Новички из числа посетителей спортзалов постоянно становятся свидетелями феномена «горячей» руки. Джей Парини, профессор английского языка в Колледже Мидлберри, так суммирует стратегию своей игры: «Я пытаюсь сотрудничать с коллегами но команде, передавая мяч тому, у кого сегодня 'горячая' рука».
Эти люди говорят от имени всех любителей баскетбола. Когда Томас Гилович, Роберт Валлоне и Эмос Тверски проводили опрос среди игроков «Philadelphia 76», выяснилось, что, по оценкам игроков, они с вероятностью примерно 25% более склонны делать бросок после предыдущего удачного броска, нежели после предыдущего промаха. Девять из десяти болельщиков согласны с тем, что у баскетболиста больше шансов на удачный бросок после двух-трех удачных бросков, нежели после двух-трех промахов. Следовательно, игроки склонны по,одерживать того, у кого «горячая» рука, а тренеры склонны отправлять на скамью запасных тех, у кого в этот день нет «горячей» руки.
Но факты не демонстрируют существование такого явления, как «горячая» рука. Когда Гилович с сотрудниками изучили детальные отчеты о бросках отдельных игроков команд «Philadelphia 76», «Boston Celtics», «New Jersey Nets», «New York Knicks» и женской, и мужской команд Корнсльского университета, им не удалось обнаружить явление «горячей» руки. Игроки с равной вероятностью попадали в кольцо и после промаха, и после удачного броска. Если и выявилась какая-то слабая тенденция, так это склонность
Может ли такое быть на самом деле, что все игроки, тренеры и болельщики, наблюдавшие тысячи последовательностей бросков, впали в заблуждение и поверили, что игроки более склонны набирать очки после удачных бросков и промахиваться посте неудачных? Да, это действительно может быть. И причина очень проста. Здесь не имело места
Возможно, вы можете увидеть «горячую» руку в одной из последовательностей удачных и пропущенных бросков. Какой из приведенных двух примеров бросков тех, кто попадал с 50%-ной вероятностью (в данном случае, 11 из 21 сделанного броска), выглядит более соответствующим нашим ожиданиям относительно случайной последовательности?
Игрок Б, результаты которого
Математики долго спорили по поводу того, образуют ли цифры числа я истинно случайную последовательность (согласно новым доказательствам, такое возможно). Тем не менее последовательность четных и нечетных чисел является, для наших целей, функционально случайной. А теперь давайте рассмотрим сочетания, которые возникают даже в цифрах числа л. Проверив первые 1 254 543 цифры числа л, я обнаружил среди них числовую последовательность дат рождения четырех из пяти членов моей семьи. (Если бы я дошел до 131 564-й цифры, я наткнулся бы на свою собственную дату — дружеское подмигивание богов?)[17]. Брюс Мартин, ушедший на пенсию химик, в качестве развлечения предположил, что если мы заменим решками нечетные цифры в числе л (3,14159...), а орлами — четные, мы получим следующую последовательность для первых 100 цифр:
POPPPOOPPPOPPPPOPOOOOOOPPOPOPPPOOOOOPPPPOPPPPPРРРО
РОООРРОРООРРОРОРОРООООООООООРРОООООРОООРРООРРРООРР
Случайные последовательности подвержены флюктуациям, и эти 49 решек и 51 орел представляют собой несколько более широкую полосу, чем обычно, с 57 повторяющимися результатами от одной цифры к другой. Но все это для того, чтобы создать выраженные полосы из 8 последовательных решек и 10 последовательных орлов. Если бы это была баскетбольная игра, можете ли вы представить себе репортаж в перерыве между таймами, — включая советы тренеров и игроков, — после того, как один игрок пропустил 8 передач подряд, а другой забросил подряд 10 мячей? Но для тех, кто выигрывает в половине случаев, например, для тех, кто подкидывает монетку, такие сочетания элементов случаются. Тот игрок из Колледжа Надежды, который сыграл в большой игре со счетом 0:10, был тем, кто забивает гол в 47% случаев.
Чтобы удостовериться в вышесказанном, можно доказать, что неслучайные сочетания элементов не возникают