представить так, что математика «не содержит» в себе ни чувственно воспринимаемый мир, ни индивидуальный мозг. Зато ее «содержит в себе» язык как таковой, но содержит таким образом, что она как бы «скрыта» от тех, кто им пользуется. Математика в таком случае рождается одновременно с языком, будучи укоренена в сфере его флективных уровней и ограничена их закономерностями и структурой языкового синтаксиса. Доказана принципиальная возможность создания систем (машин), способных к самовоспроизводству. Но это доказательство, впервые предложенное Дж. фон Нейманом, ничего не говорит о том, что такие машины-«прокреаторы» с необходимостью должны по своей сложности превосходить некоторый определенный порог. Дело в том, что неймановское доказательство не стоит ни в каком доступном определению отношении к феноменалистским тезисам термодинамики и прежде всего к законам энтропии. Термодинамический принцип, запрещающий такие состояния сравнительно простых систем, когда те не только могут в информационном плане не деградировать, но наоборот, способны создавать системы более сложные, чем они сами, – этот принцип выступает в области физики главным возражением против возможности существования каких бы то ни было явлений, в которых происходит нечто термодинамически невозможное. А именно таковы типичные эволюционные явления. Необходимо предположить, что доказательство возможности автопрокреации должно быть дополнено установлением ряда констант, определяющих
К этой проблеме можно подойти также и в аспекте теории самообучения. В ней на современном этапе не используется понятие «порога сложности», а ограничения, накладываемые на прирост знания, доставляемый наукой, носят, вообще говоря, тривиальный характер. Например, «степень глубины полученного знания ограничена информационной емкостью памяти». И все же дело не обстоит так, будто конечный результат обучения вообще не зависит от начальных условий, исходно заданных организацией обучающегося субъекта. Между человеком, который учится, и тем, что он учит, возникает своеобразная связь: даже обучаясь достаточно долгое время, нельзя «умнеть бесконечно», хотя бы уже потому, что будет исчерпана емкость резервуаров памяти. Обучение, не предусматривающее предела, предполагает присутствие (в обучаемой системе) если не некоторой безграничной разнородности, то по крайней мере организации, перешедшей определенный специфический порог. Если этот порог не достигнут, обучение быстро должно прекратиться. Если он превышен, обучение, по-видимому, будет приобретать черты процесса если не безграничного, то, во всяком случае, характеризуемого степенью универсальности, несравнимой с состояниями, которые развились из «подпороговой сложности». Таким образом, математическое обучение оказывается возможным только в тех случаях, когда исходная организация выше «пороговой».
Эта дилемма, связанная с «сущностью математики», является типично философской, однако в принципе, по-видимому, она доступна и эмпирическому исследованию, потому что «порог сложности» каким-то образом определяется свойствами реального мира – законами его природы.
Заранее неизвестно даже, является ли этот «порог» единственным. Ведь может быть и так, что «барьер сложности», переход которого обучаемой системой делает возможным ее «неограниченное обучение», неодинаково расположен для различных типов организации «обучаемых субъектов». Не исключено, что таких барьеров много, и человек, достигнув в развитии своего сознания одного из них (путем конструирования науки), смог бы и перейти его, создав «усилители разума» и «амплификаторы интеллекта». Это было бы подобно тому, как он преодолел «энергетический барьер», строя машины, которые сделали его независимым в энергетическом плане от силы его собственных мышц.
Итак, у всей этой проблематики по необходимости есть моменты, общие с термодинамикой, как то полагал и Дж. фон Нейман, рассуждая о связях термодинамики и логики. Эти моменты связаны с тем, что – с одной стороны – чтобы добыть мудрость в форме, например, науки, надо уже исходно «быть мудрым», то есть располагать соответствующей организацией в виде адекватной «надпороговой сложности». С другой стороны – с тем, что «открыть» математику человек может, только если уже ее
Поскольку же язык вместе со «спрятанной в нем» математикой возникает как общественное явление, нельзя считать правильным исследование относящихся к этим сферам феноменов как чего-то изолированного. Язык не представляет собой всего лишь «овнешненный нейронный код» системы. Скорее (или в то же время) он есть код, который возникает межличностно и основывается на системной организации человеческого коллектива. Коллектив этот является как бы организмом «высшего информационного уровня», а язык выполняет в этом организме коммуникативные функции. Мы здесь лишь слегка наметили данную проблематику. Для ее верификации следует опираться на процессы, моделирующие генезис языка, или на концепцию формирования языка в среде автоматов, различно программированных в своих исходных состояниях. Иными словами, следует опираться на дисциплину, которую можно было бы назвать моделирующей экспериментальной эпистемологией. Потенциальные ее возможности для развития человеческого знания исключительно велики, потому что такая дисциплина сделала бы возможным конструирование