космологической постоянной, то, значит, эта среда тоже является вакуумом. Будем называть этот особый вакуум вакуумом Эйнштейна- Глинера (ЭГ-вакуум), чтобы отличать его от вакуумов другой природы, рассматриваемых, например, в квантовой механике.
Существуют также теоретические модели темной энергии, отличные от модели вакуума. Если отношение давления к плотности отлично от минус единицы, то это уже не вакуум. Если это отношение больше минус единицы, то такого рода темную энергию называют квинтэссенцией. Если отношение меньше минус единицы, то в этом случае говорят о фантомной энергии. Свойства этих гипотетических форм темной энергии интересны и (особенно фантомной энергии) удивительны. Однако наблюдения всё более и более определенно свидетельствуют в пользу вакуума как самой вероятной формы темной энергии.
4.6. Прошлое и будущее. Стандартная космологическая модель, в которой темная энергия представлена космологической постоянной, дает представление об энергетическом составе Вселенной (см. выше) в различные эпохи в прошлом и будущем. В этой модели плотность темной энергии остается всегда одной и той же. Что же касается темной материи, барионов и излучения, то их плотности убывают из-за общего расширения мира. Глядя назад по времени, мы можем узнать, что, например, в эпоху первичных термоядерных реакций доля темной энергии в общем энергетическом балансе мира была пренебрежимо мала, а доля излучения приближалась тогда к 100 %. Соответственно в ту эпоху роль антитяготения в динамике Вселенной была пренебрежимо малой и её расширение управлялось почти исключительно тяготением, создаваемым излучением. Излучение преобладало по энергии приблизительно до эпохи рекомбинации (до возраста мира около 330 тыс. лет), а после этого главный вклад в энергию мира вносили темная материя и барионы. Их тяготение сравнялось по силе с анитяготением примерно 7 млрд. лет назад (см. выше), и с тех пор космологическое расширение происходит с ускорением. В будущем Вселенной ускоряющееся расширение уже никогда не будет замедляться, так что Вселенную ожидает неограниченно долгое расширение, в ходе которого темная энергия ЭГ-вакуума станет безраздельно господствовать в мире. Последнее заключение — прогноз на миллиарды лет вперед — является, конечно, экстраполяцией, прямую эмпирическую проверку которой способны будут осуществить лишь наблюдатели далекого будущего.
Хотя вклад каждой энергии в полную плотность мира изменяется из-за космологического расширения, существуют четыре постоянные, не зависящие от времени величины, которые представляют четыре соответствующие энергии в стандартной космологической модели — они называются фридмановскими интегралами. Удивительным образом эти величины оказываются близкими друг к другу по порядку величины. Фридмановские интегралы имеют размерность длины и их значения заключены в пределах от 0,03 до 3 млрд световых лет. Столь близкое (по порядку величины) совпадение этих величин не вытекает априори ни из каких законов физики или уравнений теории; в принципе эти величины могли бы различаться на неограниченное число порядков. Их близость (в пределах двух порядков величины) выявляется лишь при эмпирическом анализе данных наблюдений. Вряд ли этот факт можно считать простой арифметической случайностью. Скорее всего в нем нужно видеть указание на существование глубинной связи между вакуумом и невакуумными формами космической энергии; эта связь имеет характер определенной внутренней (негеометрической) симметрии, объединяющей четыре космические энергии [5, 6].
4.7. Эйнштейновское антитяготение. Почему же темная энергия с её положительной плотностью служит источником антитяготения? Дело в том, что, согласно общей теории относительности, тяготение создается не только плотностью среды, но и её давлением. Эффективной гравитирующей плотностью служит сумма: плотность среды плюс утроенное давление (см., например, [5, 6]). Так как давление ЭГ-вакуума есть минус плотность энергии, его эффективная плотность оказывается отрицательной и равной минус двум плотностям. Этот последний «минус» и дает всеобщее отталкивание во Вселенной.
Если сила ньютонова взаимного тяготения тел друг к другу создается их собственными массами, то сила антитяготения, действующая на тела, создается не самими этими телами, а темной энергией, в которую все они — от элементарных частиц до самых больших скоплений галактики — погружены. У Ньютона сила притяжения убывает с расстоянием как его обратный квадрат; а у Эйнштейна сила антитяготения возрастает прямо пропорционально расстоянию. Чтобы дать представление о соотношении этих сил, скажем, что два электрически нейтральных атома водорода, погруженные в ЭГ-вакуум (в отсутствие вокруг любых других тел) на расстоянии примерно в полметра друг от друга, испытывают силу антигравитационного отталкивания, которая равна по величине силе их взаимного гравитационного притяжения. На больших расстояниях антитяготение сильнее тяготения.
4.8. Квантовый вакуум? Но каковы не макроскопические, а микроскопические свойства темной энергии? Из чего она состоит? В конце 1960-х гг., задолго до открытия темной энергии, Я.Б. Зельдович [9] обсуждал возможную связь между космологической постоянной и квантовым вакуумом элементарных частиц и физических полей. Этот физический вакуум — тоже не абсолютная пустота, он имеет свою отличную от нуля энергию. Её носителями служат так называемые нулевые колебания квантовых полей, всегда существующие в пространстве даже и в отсутствие в нем каких-либо частиц. Если этот квантовый вакуум рассматривать макроскопически как некую среду, то ему следует приписать не только плотность энергии, но также и давление. При этом связь между его давлением и плотностью должна быть в точности той же самой, что и у ЭГ-вакуума — других вариантов здесь нет. Так не тождественны ли оба эти вакуума?
Было бы замечательно, если бы удалось доказать, что это действительно так: объединение кажущихся разными сущностей — плодотворнейший путь развития науки о природе, как это известно ещё со времен Максвелла, объединившего электричество и магнетизм. Но до сих пор тождественность космического и квантового вакуумов не удается ни доказать, ни опровергнуть. Неясно вообще, как можно было бы это сделать в современной стандартной фундаментальной теории. Более того, пока что не высказано никаких предложений насчет того, как идею Зельдовича можно было бы проверить — доказать или опровергнуть — в физическом эксперименте или астрономическом наблюдении.
4.9. Электрослабый масштаб? Но может быть, вопрос нужно ставить иначе? Некоторые предварительные соображения на этот счет активно обсуждаются сейчас в теоретической физике. Например, Н. Аркани-Хамед и его коллеги [12] высказывают предположение о том, что плотность темной энергии может быть выражена (и притом весьма простым образом) через характерную величину энергии электрослабого взаимодействия. Последняя близка к 1 эргу, причем этому энергетическому масштабу нередко придается центральная роль во всей физике частиц и полей. Но вспомним, что как раз подобная энергия/масса приписывается гипотетическим частицам темной материи. Если так, то весь «темный сектор» космологии мог бы задаваться единым энергетическим масштабом… Нужно, однако, сказать, что до настоящего решения проблемы здесь всё ещё очень далеко. Микроскопическая структура темной энергии остается неподдающейся загадкой. Она всё яснее осознается сейчас как одна из наиболее острых проблем всей фундаментальной науки. Физика темной энергии затрагивает, возможно, самые глубинные явления, процессы и связи в природе.
4.10. Антропный принцип. По мнению С. Вайнберга [10], проблема темной энергии состоит даже не столько в самом существовании этой формы энергии (вакуум, как он считает, несомненно должен присутствовать в мире), сколько в конкретном значении её плотности. Если это действительно космологическая постоянная, то почему она имеет именно то численное значение, которое дается астрономическими наблюдениями? Он считает этот вопрос необычайно трудным и полагает, что в поисках ответа на него стоит, возможно, обратиться за подсказкой к популярному в последние годы направлению мысли, известному под названием «антропный принцип». (Прилагательного «антропный» в нашем языке до сих пор не существовало; было слово «антропологический» с тем же греческим корнем, но вместо него в этом случае используют более короткое слово, похожее на английское «antropic»; а «человечный» или «человеческий» тут явно не подходит.)
Что же утверждает антропный принцип? Одну из первых формулировок (не лишенную иронии) дал ещё в 1960-е годы, когда и самого названия антропного принципа ещё не существовало, знаменитый московский космолог из ГАИШ А.Л. Зельманов: наблюдаемая Вселенная такая, какая она есть, ибо другие вселенные развиваются без наблюдателя. Ироническое, если не сказать сильнее, отношение к антропному принципу сопровождало его с самого начала. Но даже и критики готовы согласиться, что в антропном принципе присутствует привлекательная здравая мысль. Основательные физические и астрономические аргументы в рамках этого подхода [11] были предложены в разные годы Б. Картером, И.Л. Розенталем, Р.