оперируют колоссальными плотностями, исключительно малыми промежутками времени и пространственными интервалами — очень далеко за пределами применимости стандартной физики.
Такова, например, теория инфляции, у которой имеется много сторонников. В её основе лежит смелая гипотеза о причине космологического расширения, выдвинутая сорок лет назад Э.Б. Глинером, работавшим тогда в Петербургском (Ленинградском) Физтехе. Согласно его идее, исходный разгон вещества создало антитяготение первичного космического вакуума. При этом предполагается, что и само космическое вещество могло рождаться из гипотетического первичного вакуума. Многочисленные попытки развивать эту идею привели к сотням различных теоретических моделей, нередко весьма изобретательных.
Самый интересный результат в этой области — теория происхождения сгущений и разрежений в космическом веществе, — тех самых отклонений от однородности, которые дали начало галактикам и их скоплениям и оставили отпечатки в реликтовом фоне (см. выше). Эту теорию построили В.А. Муханов, Г.В. Чибисов (ФИАН), А.А. Старобинский (ИТФ РАН). Они показали, что такие неоднородности могли бы возникнуть благодаря квантовым флуктуациям первичного вакуума. На этом пути не удается до сих пор найти амплитуду неоднородностей, но их спектр (т. е. зависимость амплитуды от масштаба возмущений) получается правильным — он согласуется с наблюдениями реликтового фона.
4.2. Бариогенез. Теория ранней Вселенной тесно связана с физикой элементарных частиц (эта тема подробно обсуждается в новой книге [8]). Один из ключевых вопросов на стыке космологии и микрофизики — барионная асимметрия Вселенной. Тела природы, от нашей планеты Земля (и всего, что на ней) и до самых далеких звезд, сделаны из «обычных» частиц — протонов, нейтронов и электронов. Между тем, согласно одному из основных принципов микрофизики, в природе имеет место симметрия — равноправие — между частицами и античастицами. Где же те античастицы — антипротоны, антинейтроны, позитроны, — которые в силу этой симметрии должны присутствовать в мире в тех же количествах, что и обычные частицы? Физики хорошо знают античастицы: их получают на ускорителях и наблюдают в космических лучах. Но их число ничтожно по сравнению с числом частиц. Какова причина этого перекоса в природе?
Возможный ответ на этот вопрос был предложен А.Д. Сахаровым и В.А. Кузьминым в 1960-1970-е гг. Идея состоит в том, что симметрия между частицами и античастицами является в действительности не строгой, а слегка нарушенной. Было показано, что даже очень слабой асимметрии такого рода может быть достаточно, чтобы в экстремальных физических условиях, существовавших в ранней Вселенной, возникла сильная асимметрия, которая имеет место сейчас. Процесс, в результате которого это произошло, называют космологическим бариогенезом.
Одно из предсказаний этой теории — нестабильность протона, т. е. возможность его самопроизвольного распада на другие частицы. Проверка этого предсказания в физическом эксперименте ведется в наши дни в ряде крупных лабораторий мира. Итог пока таков: распад протона не обнаружен. И если он и возможен, то с характерным временем не меньше, чем 10 в 32-й степени лет, что на множество порядков больше возраста Вселенной. Вопрос, таким образом, остается открытым. Как бы то ни было, очень большое время жизни протона — это большая удача для нас самих, состоящих из протонов, электронов и нейтронов…
4.3. Темные частицы. Четверть века назад Я.Б. Зельдович активно развивал представление о том, что темная материя могла бы состоять из нейтрино. Космологические нейтрино (и антинейтрино) определенно имеются во Вселенной; они — как и фоновое излучение — представляют собой остаток, реликт горячего состояния Вселенной. Они вышли из равновесия с веществом, когда возраст мира был меньше одной секунды, и с тех пор присутствуют во Вселенной, взаимодействуя с остальными видами энергии практически только гравитационно. Их должно быть около 300, в среднем, в каждом кубическом сантиметре пространства. В начале 1980-х гг. казалось, что лабораторный физический эксперимент позволяет этим частицам иметь массы, подходящие для того, чтобы реликтовые нейтрино могли играть роль темной материи. Сейчас, однако, стало ясно, что массы нейтрино должны быть значительно меньше, так что на них можно списать в лучшем случае примерно 10 % темной материи, не больше. Каковы же тогда основные носители темной материи?
Одна из современных гипотез, выросшая из идеи Зельдовича, заключается в том, что темная материя состоит в основном хоть и не из нейтрино, но из частиц, в некотором смысле очень похожих на нейтрино: они стабильны, не имеют электрического заряда и участвуют только в гравитационном и электрослабом взаимодействиях. Однако такие частицы сильно отличаются от нейтрино по массе: они должны быть очень тяжелыми — примерно в тысячу раз тяжелее протона, так что энергия покоя такой частицы составляет примерно 1 эрг. Такие частицы до сих пор не были известны ни в теории, ни в физическом эксперименте. Если они действительно существуют, то как показывает теория, они вполне могли бы присутствовать во Вселенной в нужном количестве. Таким путем космология приходит к интересному теоретическому предсказанию: в природе должны существовать массивные стабильные слабо взаимодействующие элементарные частицы, на долю которых приходится примерно 20 % всей массы и энергии Вселенной, что в 4–5 раз больше, чем вклад барионов (протонов и нейтронов).
Прямой поиск таких частиц ведется в настоящее время в ряде крупных лабораторий мира. Не исключено также, что темные частицы могли бы проявить себя и в экспериментах на вступающем в скором времени в строй самом мощном ускорителе — Большом Адронном Коллайдере (LHC) в Европейском центре ядерных исследований (Швейцария). На нем частицы будут разгоняться до энергий, заметно превышающих энергию покоя темных частиц. И если природа склонна отдавать темным частицам заметно больше (в 4–5 раз) энергии, чем барионам, то почему бы таким частицам не рождаться в массовом порядке на LHC?
4.4. Космологическая постоянная. В настоящее время обсуждается несколько различных вариантов теоретической интерпретации темной энергии. Самая простая (но и весьма далеко идущая) из них исходит из предположения, что темная энергия задается всего одной и притом постоянной во времени физической характеристикой, называемой космологической постоянной Эйнштейна. Эта величина была введена в общую теорию относительности Эйнштейном в 1917 г. в той его космологической работе, о которой мы уже упоминали выше. Новая константа физики была нужна для того, чтобы обеспечить неизменное во времени состояние мира в целом, — условие, которое казалось тогда Эйнштейну обязательным. Космологическая постоянная, обозначаемая греческой буквой Л, служила для описания всеобщего отталкивания, которое способно сбалансировать всемирное тяготение. После работ Фридмана и открытий Слайфера и Хаббла идея статической, неизменной во времени Вселенной была оставлена. Но тогда, как говорил Эйнштейн, можно забыть и о космологической постоянной — по крайней мере до тех пор, пока в её пользу не появятся объективные эмпирические основания. Эти основания и возникли с открытием космологического ускорения в 1998–1999 гг. Космологическая модель с положительной величиной Л очень хорошо описывает наблюдаемый феномен космологического ускорения и безупречно согласуется со всем комплексом современных наблюдательных данных. Это стандартная космологическая модель сегодняшнего дня.
4.5. Темная энергия как вакуум. Согласно предложению Э.Б. Глинера, высказанному ещё в 1965 г., космологическую постоянную можно рассматривать как физическую характеристику особого рода сплошной среды, идеально равномерно заполняющей всё пространство Вселенной. Плотность этой среды не только однородна, но и не зависит от времени, будучи просто равной (с точностью до постоянного коэффициента) величине Л. Этими свойствами такая среда обладает во всех системах отсчета. Если считать, что темная энергия действительно описывается космологической постоянной, то её и нужно тогда представлять себе макроскопически как среду с всюду и всегда постоянной плотностью. Из этого представления вытекают особые феноменологические свойства темной энергии. Так, оказывается, что у темной энергии имеется давление, причем оно отрицательно по знаку, а по абсолютной величине равно плотности энергии (напомним, что плотность энергии и давление имеют одну и ту же размерность).
Отрицательное давление вообще-то встречается в природе и технике; но такой связи между давлением и плотностью нет ни у одной другой среды в мире. Как следует из теории, темная энергия с такой плотностью и давлением не может — в отличие от любых других сред — служить в качестве системы отсчета, ибо движение и покой относительно неё неразличимы. Тем же свойством обладает абсолютная пустота — пространство, полностью свободное от любых форм энергии. Такая неразличимость движения и покоя является главным механическим свойством вакуума. Раз им обладает темная энергия, описываемая