способность испускать рентгеновское и радиоактивное излучение, появилась новая порода физиков, поставивших перед собой цель исследовать взаимосвязи энергии со структурой материи. За следующие десять лет они поняли, что мир состоит не из подвешенного в пустом пространстве вещества, а из энер­гии, и отказались от веры в материальную Вселенную, подчиняющуюся законам Ньютона.

Квантовая физика говорит, что атомы состоят из энергетических вихрей; каждый атом подобен вращающемуся и раскачивающемуся волчку, излучающему энергию. И поскольку всякому атому присущ свой собственный уникальный энергетический спектр, их соединения (молекулы) также излучают характерные только для них энергии. Это касается всех материальных образований во Вселенной, включая нас с вами.

Если бы существовала возможность рассмотреть строение атома в «атомный» микроскоп — что бы мы увидели? Представьте себе движущийся по пустыне пылевой вихрь-торнадо. Теперь мысленно уберите из этого вихря весь песок и всю пыль. У вас останется невидимая вращающаяся воронка. Так вот, в действительности атом состоит из множества подобных, бесконечно малых энергетических воронок, называемых кварками и фотонами.

Издали атом покажется вам слегка размытой прозрачной сферой. Давайте попробуем к нему приблизиться. Как это ни удивительно, он будет становиться все менее определенным. Когда же вы подойдете к атому вплотную, он исчезнет. Вы не увидите ничего. Чем пристальней вы станете всматриваться в структуру атома, тем верней будете наблюдать одну только физическую пустоту. Оказывается, у атома нет материальной структуры — король голый!

Помните модель атома, которую вы изучали в школе, — крутящиеся шарики, напоминающие солнечную систему в миниатюре? Давайте-ка сопоставим эту модель с квантово-механическими представлениями о структуре атома (см. стр. 113).

Нет-нет, это не типографский брак. Атомы сделаны не из материи, а из невидимой энергии!

Итак, в нашем мире материальная субстанция (материя) возникает из ничего. Довольно странно, если вдуматься. Сейчас у вас в руках вот эта вполне вещественная книга. Но если бы у вас была возможность всмотреться в ее структуру с помощью «атомного» микроскопа, вы обнаружили бы, что держите пустоту. Да уж, если мы, студенты-биологи в свое время и были в чем-то правы, так это в том, что квантовая физика — штука головоломная.

Давайте разберемся с пресловутым девизом квантовой физики «Вот оно есть... а вот его и нет». О материи можно сказать, что она одновременно является плотной субстанцией (частицами) и нематериальным силовым полем (волнами). Когда ученые изучают атомы как материальные частицы, те выглядят и ведут себя как физическая материя. Но если их начинают описывать в терминах электрических потенциалов и длин волн, они проявляют свойства энергии (волн) [Hackermuller, et al, 2003; Chapman, et al, 1995; Pool 1995]. Знаменитое уравнение Эйнштейна E = mс2 устанавливает фактическое тождество материи и энергии. Согласно этому уравнению, Е — энергия, равна m (массе) — то есть материи, умноженной на с2 — возведенной в квадрат скорости света. Это означает, что мир, в котором .мы живем, — отнюдь не скопище дискретных, плотных объектов, разделенных мертвым пространством. Вселенная — неделимое динамичное целое, материю и энергию которого невозможно рассматривать как независимые друг от друга элементы.

Это не побочные эффекты. Это — эффекты!

Если бы биологи и врачи имели представление об открытиях в области квантовой физики, они бы иначе смотрели на болезни и здоровье человека. Но их учили и продолжают учить видеть в человеческом теле машину, функционирующую в соответствии с ньютоновскими принципами. Вот почему они, исследуя в мельчайших подробностях механизмы этой машины, к числу которых относятся уже упоминавшиеся гормоны, цитокины, факторы роста, опухолевые суппрессоры и т. д., продолжают игнорировать роль энергии в процессах жизнедеятельности.

Биологи традиционного толка — редукционисты. Они полагают, что механику наших физических тел можно постичь, изучая химические «кирпичики», из которых построены клетки. С редукционистской точки зрения, биохимические реакции, которые лежат в основе процессов жизнедеятельности, подобны фордовскому сборочному конвейеру: некое конкретное вещество запускает реакцию, вслед за которой проис­ходит другая реакция с участием другого вещества и т. д. Эта линейная модель от А к В, затем к С, D и Е, схематически изображенная на следующей иллюстрации, предполагает, что, если в организме возникает сбой, проявляющийся в виде симптомов болезни, его нужно искать на том или ином участке вышеописанного химического конвейера. Отсюда следует вывод: чтобы устранить «неполадку» и восстановить здоровье, достаточно произвести функциональную замену дефектной «детали», например, с помощью таблеток или специально сконструированных генов.

С квантово-механической точки зрения, Вселенная есть совокупность взаимозависимых энергетических полей, взаимодействия которых переплетаются в замысловатую паутину. Иными словами, в квантово-механической Вселенной процессы не линейны, а холистичны. Клеточные составляющие организмов задействованы в сложнейшей сети перекрестного обмена данными, прямых и обратных связей (см. иллюстрацию). Это означает, что нарушения в организме могут возникать из-за сбоев в любом звене информационной сети. Тонкое химическое регулирование столь сложной интерактивной системы требует гораздо более глубокого понимания организма, чем примитивный ремонт того или иного участка линейного конвейера с помощью лекарств. Ведь в этом случае, изменив концентрацию С, вы измените не только действие D. Посредством холистических путей изменение концентрации С существенно повлияет также и на А, В, и Е.

Холистический квантово-механический процесс. Схема взаимодействий внутри довольно ограниченной совокупности белков (зачерненные кружки с числовыми обозначениями), содержащихся в клетке мушки-дрозофилы. Большая часть этих белков имеет отношение к синтезу и метаболизму молекул РНК. Белки, заключенные в овалы, сгруппированы в соответствии с конкретными функциональными путями. Соединительные линии соответствуют белок-белковым взаимодействиям. Наличие межбелковых связей различных путей показывает, как воэдействие на тот или иной белок может породить существенные побочные эффекты в других путях. Еще более далеко идущими такие побочные эффекты могут быть в случаях, когда один и тот же белок используется для выполнения совершенно различных функций. Так, белок Rbp 1 (отмечен стрелкой) используется при метаболизме РНК, а также в путях, связанных с половой принадлежностью Science 302:17277736; воспроизводится с разрешения. © 2003 AAAS.

Осознав, насколько сложны процессы обмена информацией в организме, я понял, что редукционистский линейный подход (A>B>C>D) не в состоянии приблизить нас к истинному пониманию природы болезней. Проведенные в последние годы исследования путей белок-белкового взаимодействия в клетке доказывают существование холистической информационной паутины, которую предсказывает квантовая физика [Li, et al, 2004; Giot, et al, 2003; Jansen, et al, 2003].

На следующем рисунке показана схема взаимодействий между белками в клетке плодовой мушки- дрозофилы.

Безусловно, биологические нарушения могут возникать вследствие обрыва любой из информационных связей в таком хитросплетении. Изменив характеристики одного белка, вы неизбежно повлияете на множество других белков во взаимосвязанных сетях. Кроме того, обратите внимание на семь кружков, которые объединяют белки в соответствии с их функциями. Белки, объединенные в одну функциональную группу, в частности те, что отвечают за половую принадлежность (отмечены стрелкой), также оказывают влияние на белки с совершенно иными функциями — такими, как синтез РНК (например, на РНК-геликазу). Исследователи ньютоновского толка явно недооценивают степень переплетенности биоинформационных

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату