Подсчитаем: если уровень воды в самоваре понизился в 4 раза, то скорость истекания понизится всего вдвое. Если уровень понизился в 9 раз, то время наполнения очередного стакана увеличится в 3 раза и т. д.
А в результате интегральное (или суммарное) время опорожнения сосуда будет вдвое больше, чем если бы сохранялось первоначальное давление.
В школе часто решают задачи по арифметике вроде такой: «Через одну трубу бассейн наполняется за 5 часов, а через вторую опорожняется за 10 часов (рис. 205). За какое время наполнится водой пустой бассейн, если открыть обе трубы сразу?»
Что же будет, если открыть кран и слив одновременно? Первую задачу в школе решают так: за 1 час из первой трубы вода заполнит 1/5 бассейна; из второй за это же время выльется 1/10 бассейна; значит, при открытых обеих трубах за час вода заполнит 1/5-1/10=1/10 часть бассейна. Выходит, бассейн наполнится через 10 часов. За такое решение в школе ставят 5 баллов.
Задача почти такая же, с которой автор встретился в сауне, когда наполнялся водой бассейн. Время его наполнения с закрытым сливом – полчаса.
Время его опорожнения через сливную трубу – тоже полчаса.
Попробовали в сауне решать так же и получили, что наш бассейн и вовсе не будет наполняться: вся вода, поступившая через кран, тут же выльется в слив, и бассейн будет пуст. Однако когда ради опыта открыли и кран, и слив, то обнаружили, что бассейн стал довольно быстро наполняться, а к концу пребывания в сауне был заполнен чуть меньше, чем наполовину.
В чем дело? А в том, что вода через кран вливается при постоянном давлении, следовательно, равномерно. А вытекает неравномерно в зависимости от высоты уровня воды. По этому принципу работают и водяные часы (рис. 206). Так что такие задачи решаются не просто, и на уроках арифметики им не место. Может быть, только в старших классах на уроках высшей математики.
Что же, часы в Форте Байяр работают неверно? Выходит, нет, если измерять полное время вытекания, что и делалось в этом шоу. Плохо одно: нельзя заставить воду вытекать равномерно. А как было бы удобно! Неужели нет таких часов, или сосудов, по крайней мере?
Оказывается, есть. Сосуд этот создан французским физиком Мариоттом (помните закон Бойля – Мариотта?) и назван в его честь сосудом Мариотта. Это бутыль с узким горлом, через пробку которой вставлена стеклянная трубка (рис. 207). Если открыть кран 3 ниже конца трубки, то жидкость будет литься из него с одним и тем же напором, пока уровень воды в сосуде не опустится до нижнего конца трубки (на уровне пробки 2). Вдвинув трубку вниз почти до уровня крана 3, можно заставить всю жидкость, находящуюся выше уровня отверстий, вытечь равномерно, хотя и очень тонкой струей.
В чем же здесь дело? Проследим за тем, что происходит в сосуде при открытии крана 3. Прежде всего выливается вода из стеклянной трубки; уровень жидкости внутри нее опускается до конца трубки. При дальнейшем вытекании опускается уже уровень воды в сосуде, и через стеклянную трубку входит наружный воздух, он пробулькивает пузырьками через воду и собирается над ней в верхней части сосуда. Теперь на всем уровне пробки 2 давление равно атмосферному. Значит, вода из крана 3 вытекает лишь под давлением слоя воды 2 – 3, потому что давление атмосферы изнутри и снаружи сосуда уравновешивается. А так как толщина слоя 2 – 3 остается постоянной, то и струя течет с одинаковой скоростью.
Вот из такого бы сосуда и сделать часы в Форте Байяр! Тем более сосуд этот изобрел француз Мариотт. Разграфили бы его черточками, обозначающими, допустим, минуты и следили за прошедшим и оставшимся временем – было бы удобно!
Но в жизни все получилось бы не совсем так, как задумывалось: от пузырьков воздуха жидкость испарится, в нее попадает пыль, да и больно уж сложные часы получатся. Не лучше ли песочные часы, которые всем хороши – и герметичны, и время течет в них равномерно? Недаром мудрый старик Фура из того же форта в шоу использовал именно песочные часы.
Действительно, а почему песочные часы (рис. 208, а), в отличие от водяных, показывают ход времени равномерно? Ответ один: песок, в отличие от жидкости, истекает равномерно и формуле Торричелли не подчиняется. В чем же здесь дело?
Дело в том, что песок истекает иначе, чем жидкость, потому что в нем есть внутреннее трение. В земле можно сделать небольшой свод, и он будет держаться. Но если мы будем все более и более расширять этот свод, то он когда-нибудь обрушится, что часто бывает при добыче песка туннельным способом без крепи. Описание такого ужасного обрушения с гибелью человека есть в рассказе-триллере Леонида Андреева «Жизнь Василия Фивейского».
Если хорошо приглядеться к песочным часам, то видно, что сразу же после их перевертывания сверху высыпается чуть-чуть песка, затем в верхней колбе у отверстия образуется постоянно обрушивающийся свод (рис. 208, б), величина которого зависит, в основном, от сорта песка, обычно тщательно приготовленного по специальной технологии. А так как свод этот имеет постоянную высоту, то безразлично, имеет ли верхняя колба-трубка высоту в сантиметр, метр или километр, – давление песка у отверстия будет постоянным, поэтому и скорость вытекания песка тоже постоянна. Конечно, не точно, а почти, так как в самом начале и в самом конце процесса все происходит не совсем по писаному. Но песочные часы завоевали свое место в нашей жизни и выиграли бой с клепсидрами неспроста – их преимущества неоспоримы!
Что держит шарик на фонтане?
С течением жидкостей и газов связано много на первый взгляд таинственных и необъяснимых явлений.
Почему держится и не падает шарик на вершине фонтана и даже воздушной струи? Почему сближаются два листка бумаги или два подвешенных шарика, если подуть между ними? Почему сталкиваются идущие параллельно и близко друг к другу корабли? Почему «притягивает» близко стоящего человека быстро идущий поезд? И, наконец, почему «сама собой» поднимается жидкость в пульверизаторе или, для кого это понятнее, в карбюраторе?
Все эти явления связаны с течением жидкостей или газов и подчиняются принципу, высказанному в 1738 г. Даниилом Бернулли (1700—1782), петербургским академиком: «В струе жидкости или газа давление