Так и было определено атмосферное давление. А вот с высотой атмосферы дело посложнее. Плотность воздуха уменьшается с высотой. Так, на высоте 5,4 км над уровнем океана плотность воздуха падает вдвое, на высоте 11 км – вчетверо и т. д. (рис. 199). Поэтому верхняя граница атмосферы размыта, а чтобы ее нагляднее можно было представить, здесь помещен рис. 200 из старинной книги [49].
Надо сказать, еще великий Аристотель подозревал, что воздух есть тело «весомое». Желая проверить это, ученый взвешивал бурдюки – пустой и заполненный воздухом. И оказалось, конечно, что эти бурдюки весили одинаково. Вот, казалось бы, мудрец, а маху-то дал – ведь он взвешивал воздух в воздухе! Неужели не мог опустить в воду (море-то близко в Греции!) и взвесить там бурдюк с водой и без нее. Ответ был бы тот же – вода не имеет веса! Или хотя бы взвешивал на точных весах, тогда полный воздухом бурдюк, будучи хоть под каким-то давлением, оказался бы большего веса, чем пустой! Даже повышенное содержание углекислого газа (бурдюк-то ртом надували!) могло дать эту разницу. Но фатальное невезение – и на тысячи лет воздух принято было считать невесомым. А вес-то у него немалый – почти 1,3 кг · м3.
Автор на лекциях всегда спрашивает своих студентов, смогли бы они поднять воздух в этой аудитории одной рукой, на что в ответ – громкий смех. Но смех этот становится еще громче, когда студенты узнают, сколько этот воздух действительно весит – обычно свыше 100 кг!
В заключение опишем простой опыт, который одним махом подтверждает наличие атмосферного давления. Этот опыт производит потрясающее впечатление на окружающих, хотя каждый если не видел, то хотя бы слышал о нем.
Надо наполнить стакан водой, лучше до краев, прикрыть его листком гладкой писчей (не газетной!) бумаги и, придерживая листок рукой, перевернуть. Затем отпустить листок (рис. 201). Вода не выльется из стакана, так как на листок снизу давит атмосферное давление! Если бы стакан был высотой более 10 м, то атмосферного давления не хватило бы и листок отпал. А на обычном стакане держится, даже внутрь прогибается, если стакан неполный.
Особенно эффектно выглядит этот опыт, когда стакан заполняют красным вином (а-ля Паскаль!) и незаметно прикрывают его прозрачным листком чертежной или другой жесткой пленки. Вино как бы висит в стакане, ничем не удерживаемое!
Нормальное давление атмосферы примерно 101,3 кПа. Опыт бургомистра города Магдебурга Отто фон Герике в 1654 г. со знаменитыми Магдебургскими полушариями (рис. 202) показал, что при их диаметре в 65 см сила атмосферного давления, сжимающая их, достигала 35 кН и их не могли растащить даже восемь пар лошадей (рис. 203)! Хитер был бургомистр Магдебурга – он мог вполне обойтись лишь одной восьмеркой лошадей, прикрепив другой крюк к стене. Сила-то, разрывающая полушария, была бы той же! Хотя бы по третьему закону Ньютона. Но восемь пар лошадей эффектнее, и кто-кто, а сам бургомистр мог это себе позволить!
Точны ли часы в Форте Байяр?
Если читатель помнит знаменитые телепередачи из Форта Байяр, время там измеряют исключительно водяными часами – клепсидрами, или в переводе с греческого «воровками воды». В глаза бросается то, что при перевертывании часов время начинает бежать очень уж быстро, а в конце, когда «синей жидкости» остается совсем мало и все вокруг кричат: «Скорее, время кончается…», оно как бы замедляет свой шаг. В чем тут дело?
Тут нам поможет детская задача, предложенная Я. И. Перельманом:
«Самовар, вмещающий 30 стаканов, полон воды. Вы подставляете стакан под его кран и с часами в руках следите по секундной стрелке, за какое время стакан наполняется до краев. Допустим, что за полминуты. Теперь зададим вопрос: за какое время опорожнится весь самовар, если оставить кран открытым?
Казалось бы, здесь детски простая арифметическая задача: один стакан вытекает за полминуты, – значит, 30 стаканов выльются за 15 минут.
Но сделайте опыт. Окажется, что самовар опорожняется не в четверть часа, как вы ожидали, а в полчаса».
А дело здесь в том, что скорость вытекания воды меняется в зависимости от ее уровня. Чем выше уровень, тем быстрее будет наполняться стакан, и чем он ниже, тем дольше нам нужно ждать его заполнения.
Уже известный нам Э. Торричелли вывел зависимость скорости вытекания жидкости
Позвольте, позвольте, но это же хорошо известная формула скорости свободного падения груза с высоты! Неужели и жидкость вытекает с такой же скоростью? Да, можно так сказать, если пренебречь гидравлическими сопротивлениями в трубке и кранике, вихревыми процессами и искривлениями потоков в струе, а также если считать жидкость идеальной. Точно так же, как при падении груза мы не учитываем сопротивления воздуха, увеличения (или уменьшения?) ускорения свободного падения
Возникает вопрос: что, скорость вытекания жидкости не зависит от ее плотности? Что, ртуть из сосуда выльется одновременно со спиртом или эфиром (рис. 204)? Да, одновременно, как это ни удивительно, с той же точностью, с которой падают отпущенные вместе тяжелые и легкие тела, т. е. практически одновременно, ибо в формуле Торричелли нет упоминания о плотности жидкостей.
Однако если мы попробуем выливать эту жидкость на большой высоте, да, чего доброго, еще и на Луне, то вытекать она будет медленнее, так как меньше ускорение свободного падения