Правый график рис. 2.6.1 демонстрирует, что даже такое сильное изменение структуры стратегии, как полный запрет на использование длинных позиций, не изменило принципиально форму оптимизационной поверхности. Глобальный максимум сместился из узла с координатами 30 и 105 (по горизонтальной и вертикальной осям соответственно) в узле с координатами 30 и 70. Это означает, что оптимальное значение одного параметра не изменилось вовсе, а оптимум второго параметра несколько уменьшился.
Площадь прежней оптимальной области расширилась существенно. Кроме того, появилось несколько новых оптимальных областей. Это объясняется тем, что в течение последних 10 лет (период, на котором проводилась оптимизация), несмотря на недавний финансовый кризис, на рынке преобладали тенденции низко-волатильного умеренного роста. В таких условиях короткие опционные позиции более прибыльны по сравнению с длинными. Поэтому полный запрет на открытие длинных позиций привел к большему количеству прибыльных комбинаций параметров.
С точки зрения устойчивости важно то, что все оптимальные области группируются в одной части оптимизационного пространства, а именно вокруг оригинальной оптимальной области. Учитывая, что структурное изменение, заключающееся в полном запрете длинных позиций, является весьма существенным (на грани принципиального изменения стратегии), можно заключить, что устойчивость оптимизационного пространства в данном примере оказалась достаточно высокой.
2.6.3. Устойчивость по отношению к периоду оптимизации
В процессе параметрической оптимизации алгоритмическое вычисление целевой функции производится на основе исторических данных. Решение о длине исторического периода (называемого также «историческим горизонтом оптимизации») часто оказывает существенное влияние на результаты оптимизации. К сожалению, не существует объективных критериев выбора протяженности исторических временных рядов. Принято считать, что они должны включать в себя периоды с различной ценовой динамикой – кризисные периоды и периоды низковолатильного рынка. Также считается, что оптимизация должна проводиться на данных, включающих неблагоприятные периоды, а также периоды, благоприятствующие оптимизируемой стратегии. Придерживаясь этой концепции, некоторые создатели автоматизированных торговых систем предлагают использовать не сплошной (непрерывный) исторический ряд, а составлять базу данных из отдельных кусков истории, наиболее подходящих (по их мнению) для оптимизации определенной стратегии. Такой подход кажется нам неприемлемым, поскольку выбор «подходящих» отрезков исторических данных не может быть объективным.
По нашему мнению, для параметрической оптимизации следует использовать непрерывный ценовой (или какой-либо другой) ряд. Вопрос о длине этого ряда нужно решать исходя из идеи конкретной торговой стратегии. Однако, какой бы горизонт истории ни был бы выбран, необходимо стремиться к тому, чтобы результат оптимизации был устойчив к его изменениям. Чем менее оптимизационное пространство чувствительно к небольшим изменениям в протяженности периода оптимизации, тем надежнее и устойчивее будет создаваемая стратегия. Желательно, чтобы оптимизационное пространство было устойчивым даже при значительных изменениях в длине исторического периода. Идеальной может считаться ситуация, когда результаты оптимизации, проведенной на двухлетнем периоде, близки к результатам, получаемым на трехлетнем периоде, или когда результаты шести– и десятилетней оптимизации не слишком отличаются друг от друга.
Проведем тест на устойчивость оптимизационного пространства базовой дельта-нейтральной стратегии, оптимизируемой по целевой функции «прибыль». Для того чтобы определить степень устойчивости данного пространства к длине исторического периода, проведем последовательно серию оптимизаций на исторических периодах разной длины. Все оптимизации, представленные нами ранее в этой главе, основывались на десятилетнем историческом периоде. Теперь исследуем оптимизации, выполненные на девятом, восьмом, …, первом годах ценовой истории.
Для того чтобы результаты оптимизаций были сопоставимы (а также для того, чтобы было возможно построить свертку нескольких оптимизаций), необходимо чтобы значения целевой функции в каждом случае находились приблизительно в одном диапазоне. Это достигается с помощью трансформации, описанной в разделе, посвященном многокритериальному анализу (формула 2.4.1).
Сравнение 10 оптимизационных поверхностей (рис. 2.6.2, для простоты восприятия графиков показаны только оптимальные области) выявляет наличие двух устойчивых оптимальных областей, присутствующих почти на всех поверхностях. Одна из них расположена в районе 28–32 дней по параметру «количество дней до экспирации» и 85–140 дней по параметру «период истории для расчета HV» (будем условно называть эту область «левой»). Вторая оптимальная область имеет координаты 108–112 по первому параметру и 90–160 по второму (будем называть эту область «правой»).
Левая область присутствует на всех оптимизационных поверхностях, кроме двух– и трехлетней. Площадь ее поверхности достаточно стабильна (изменяясь весьма незначительно от случая к случаю). Исключение составляет только оптимизация, проведенная на однолетнем периоде. В этом случае левая область имеет большую площадь и, по сути, представляет собой три отдельные сгруппированные области.
Правая область также присутствует на всех оптимизационных поверхностях, за исключением единственного случая, когда оптимизация проводилась на десятилетнем периоде. Еще в двух случаях эта область оказалась несколько смещенной в область более высоких значений параметра «период истории для расчета HV». Площадь поверхности правой области более изменчива, чем площадь левой области. В оптимизациях, проведенных на 1-, 2-, 3-, 4– и 5-летнем периодах, правая область имеет довольно большие размеры. В противоположность этому на оптимизационных поверхностях, полученных на более продолжительных периодах, она имеет меньшую площадь поверхности. Кроме того, во всех случаях правая область не является единой, а раздроблена на большое количество субобластей.
Степень устойчивости оптимизационного пространства можно оценить разными методами. Самый простой из них – визуальный. Сравнение разных графиков рис. 2.6.2 в принципе указывает на то, что данная оптимизация достаточно устойчива. Это следует из описанного выше персистентного расположения оптимальных областей. Можно оценить степень устойчивости количественно, например, путем вычисления изменчивости координат узлов, составляющих оптимальные области.
В том случае, когда устойчивость оценивается на основании сравнения большого количества оптимизационных поверхностей (как в нашем примере), можно использовать метод свертки. Идея заключается в том, что если поверхности очень отличаются друг от друга (то есть оптимизация является не устойчивой), то свертка таких поверхностей будет иметь большое количество беспорядочно разбросанных оптимальных областей. Если же оптимальные области располагаются на всех поверхностях приблизительно в одних и тех же местах (то есть если оптимизация устойчива), то свертка будет иметь одну или несколько четко обозначенных оптимальных областей. Нижний средний и правый графики рис. 2.6.2 демонстрируют аддитивную и минимаксную свертку десяти оптимизационных поверхностей (оба вида свертки оказались в данном случае почти идентичными). Левая и правая оптимальные области на этих свертках достаточно четко обозначены и локализованы, что еще раз подтверждает наш вывод об устойчивости оптимизации к изменению используемого периода истории.
2.7. Методы оптимизации
До сих пор мы использовали самый информативный способ оптимизации – полный перебор всех возможных