Теперь рассмотрим пример, основанный на реальных рыночных данных. На правом графике рис. 2.5.2 имеются три области с высотными отметками выше 10 (напомним, что данная оптимизационная поверхность является продуктом трансформации исходной поверхности, полученной путем свертки трех функций полезности). Обозначим их как «левая», «средняя» и «правая». Все три области имеют близкие по величине площади основания (kleft = 10, kmiddle = 13, kright = 14) и высотные отметки (hleft = 14,09, hmiddle = 13,45, hright = 11,91), что делает выбор одной из них затруднительным. Применение нашей методики позволяет сделать объективный выбор. Поскольку k и h имеют одинаковый порядок величин и h > 1, никаких трансформаций не требуется. Подставляя значения в формулу 2.5.1, получим: Sleft = 79,6, Smiddle = 86,9, Sright = 80,2. Следовательно, выбор средней области является в данном случае предпочтительным. Это решение не тривиально, поскольку данная область не имеет ни наибольшую из трех вариантов площадь основания, ни наибольшую отметку. Интересно, что данный пример демонстрирует комбинированное применение двух методик: вначале оптимизационное пространство было трансформировано путем вычисления отношения среднего к стандартному отклонению, а затем выбор оптимальной области осуществлялся по методу оценки геометрии поверхности.
2.6. Устойчивость оптимизационного пространства
В предыдущем разделе мы использовали свойство робастности для выбора оптимального решения в пределах нескольких областей оптимизационного пространства. Говоря о понятии робастности, мы определили его как чувствительность целевой функции определенных узлов оптимизационного пространства к небольшим изменениям оптимизируемых параметров. Поскольку желательным свойством оптимального решения является большая робастность (то есть нечувствительность), то можно сказать, что, выбирая оптимальное решение, мы стремимся найти наиболее устойчивую оптимальную область. Подчеркнем, что в данном контексте речь идет об устойчивости по отношению к оптимизируемым параметрам.
В этом разделе будет рассмотрен другой аспект устойчивости – степень чувствительности оптимизационного пространства к неоптимизируемым параметрам. В процессе параметрической оптимизации, основанной на алгоритмическом вычислении целевой функции, исследуется множество комбинаций оптимизируемых параметров. При этом многие другие параметры остаются неизменным (будем называть такие параметры «фиксированными»). Их значения могут быть подобраны на более раннем этапе (используя научный подход) либо могут задаваться самой идеей и структурой стратегии, заложенной на начальном этапе ее формализации. Устойчивость оптимизационного пространства к небольшим изменениям фиксированных параметров и к незначительным изменениям в структуре стратегии является важным показателем надежности и качества оптимизации.
Поясним эту идею на простом примере. В процессе оптимизации базовой дельта-нейтральной стратегии нами была получена определенная оптимизационная поверхность (рис. 2.2.2). В этом случае оптимизировались только два параметра, значения всех остальных были зафиксированы. В частности, параметр «порог критерия» был зафиксирован на значении 1 % (позиции открывались только для тех опционных комбинаций, для которых ожидаемая прибыль была >1 %). Предположим, что мы увеличили значение данного параметра до 2 %. Далее предположим, что это привело к тому, что форма оптимизационной поверхности изменилась и стала выглядеть иначе (например, так, как показано на левом графике рис. 2.5.2). Если бы столь незначительное изменение фиксированного параметра привело к такому кардинальному изменению поверхности, то мы должны были бы заключить, что эта поверхность неустойчива, а сама оптимизация крайне ненадежна и, следовательно, полагаться на ее результаты весьма рискованно.
2.6.1. Устойчивость по отношению к фиксированным параметрам
Рассмотрим устойчивость оптимизационного пространства базовой дельта-нейтральной стратегии по отношению к фиксированному параметру «порог критерия». На рис. 2.2.2 показана поверхность, полученная для целевой функции «прибыль» при условии, что порог критерия равен 1 %. Увеличим значение этого фиксированного параметра до 3 % и проверим, насколько такое изменение повлияет на форму оптимизационной поверхности.
Напомним, что до изменения фиксированного параметра глобальный максимум имел координаты 30 по параметру «число дней до экспирации» (горизонтальная ось графика) и 105 по параметру «период истории для расчета HV» (вертикальная ось). После увеличения значения фиксированного параметра глобальный максимум сместился и расположен в узле с координатами 16 и 120 соответственно. Учитывая общую площадь оптимизационного пространства, такое смещение глобального максимума нельзя назвать очень существенным (хотя оно безусловно не является пренебрежимо малым).
Исходное оптимизационное пространство имело единственную оптимальную область, протянувшуюся вдоль 30-й вертикали в диапазоне от 80 до 125 дней по параметру «период истории для расчета HV» (рис. 2.2.2). Левый график рис. 2.6.1 демонстрирует новое пространство, полученное в результате изменения фиксированного параметра. Прежняя оптимальная область сохранилась приблизительно на том же месте (незначительно сместившись вниз) и слегка увеличилась в размерах. Вместе с тем слева от оригинальной области появились четыре новые оптимальные области, две из которых очень маленькие, а две другие сопоставимы по размерам с прежней областью. Важно отметить, что, хотя количество оптимальных областей существенно выросло (пять вместо одной), все они располагаются приблизительно в левой нижней части оптимизационного пространства (12–36 дней по параметру «число дней до экспирации» и 40–180 по параметру «период истории для расчета HV»).
Из вышесказанного можно сделать вывод, что изменение фиксированного параметра не изменило принципиально форму оптимизационной поверхности. Это свидетельствует об относительной устойчивости оптимизационного пространства. Хотя произошедшие изменения могут показаться весьма существенными, необходимо принять во внимание, что изменение фиксированного параметра также было достаточно большим (с 1 % до 3 %). Мы специально использовали такое большое изменение, чтобы наглядно продемонстрировать видоизменение пространства. При тестировании устойчивости, производимой в ходе оптимизации автоматизированной стратегии, предназначенной для реальной торговли, можно ограничиться гораздо меньшими изменениями фиксированных параметров.
2.6.2. Структурная устойчивость
Понятие структурной устойчивости является очень широким. К структуре стратегии можно отнести практически все, начиная с базовой идеи и заканчивая относительно малозначительными техническими элементами. Изменение любого структурного элемента может коренным образом изменить форму оптимизационного пространства. Однако следует изначально ограничить область исследований структурной устойчивости. Интерес разработчика стратегии состоит в том, чтобы получаемое им оптимизационное пространство было устойчиво к небольшим изменениям структуры стратегии. Дело в том, что любое существенное изменение превращает оптимизируемую стратегию в совершенно другую стратегию, оптимизация которой, возможно, должна строиться совсем по-другому.
Примером небольших структурных изменений может быть метод распределения капитала или применение тех или иных инструментов управления рисками. Применительно к дельта-нейтральной стратегии, допустимое структурное изменение может заключаться, например, в изменении алгоритма расчета индексной дельты. С одной стороны, изменения этих и подобных им структурных элементов не меняет смысл стратегии. С другой стороны, желательно, чтобы оптимизационное пространство было устойчиво к изменениям такого рода. Например, если схема распределения капитала между элементами портфеля несколько изменяется и форма оптимизационного пространства не меняется коренным образом, то такая оптимизация является устойчивой и надежной. При этом следует помнить, что оптимизационное пространство может быть более устойчивым к одним структурным изменениям и менее устойчиво к другим.
В качестве примера рассмотрим