нашлось ни одного такого портфеля.) На втором этапе существует несколько вариантов действий. Можно ранжировать все характеристики по степени их значимости. После чего из множества портфелей, отобранных на первом этапе, выбирается один с наилучшим значением первой по важности характеристики. Если таких портфелей окажется несколько, то дальнейший отбор производится с помощью второй по важности характеристики. И так далее. Недостаток такого подхода заключается в том, что весьма затруднительно упорядочить все характеристики по степени их важности (многие из них равнозначны). Другой вариант второго этапа заключается в применении Паретовского метода многокритериального отбора. Однако в этом случае мы будем лишены возможности контролировать количество выбираемых опционных портфелей. Этот недостаток может оказаться весьма существенным, поскольку выбор нескольких портфелей вместо одного означает необходимость открытия гораздо большего количества позиций, что негативно скажется на потерях за счет проскальзывания и операционных издержек.

Менее суровый алгоритм может выглядеть так. На первом этапе выбираются все портфели, n из m характеристик которых удовлетворяют требованиям, предъявляемым к интервалу их допустимых значений. В наших примерах число характеристик равно 6 (m = 6). Если принять n = 5, то в примере, представленном таблицей 1.6.3, найдется единственный портфель, прошедший первый этап отбора, а в таблице 1.6.2 не окажется ни одного такого портфеля. Зато если принять n = 4, то в таблице 1.6.2 будет сразу девять портфелей, прошедших первый этап отбора (обозначены толстыми рамками в таблице). Второй этап может быть реализован теми же двумя путями, что были описаны для сурового алгоритма. Например, если считать наиболее важной характеристикой «количество комбинаций» (чем их меньше, тем лучше, но не менее 20), то из девяти альтернатив на втором этапе будет выбран портфель, определяемый параметрами (порог критерия = 15, диапазон страйков = 9). Можно пойти и другим путем. Из множества вариантов, прошедших первый этап отбора, на втором этапе можно выбрать портфель, имеющий наилучшие значения по тем характеристикам, которые не попали в интервал допустимых значений. В таблице 1.6.2 все девять портфелей имеют неудовлетворительные значения по характеристикам «процент коротких комбинаций» и «вероятность убытка». Однако портфель, определяемый параметрами (порог критерия = 7, диапазон страйков = 12), имеет по этим характеристикам лучшие показатели, чем остальные восемь портфелей. Этот портфель и может быть выбран в качестве оптимального.

Как для сурового, так и для более мягкого алгоритма реализация второго этапа может основываться на другом принципе. Вместо априорного ранжирования характеристик по степени их важности, можно принять в качестве основной ту характеристику, значения которой изменяются в более широком диапазоне, чем значения других характеристик. Например, в таблице 1.6.2 все значения характеристик «коэффициент асимметричности» и VaR лежат в очень узком интервале значений. Поэтому все девять портфелей, прошедших первый этап отбора, почти не отличаются друг от друга по этим характеристикам. Следовательно, не имеет никакого смысла выбирать их в качестве основных ориентиров для второго этапа выбора. С другой стороны, значения характеристик «количество комбинаций» и «количество базовых активов» варьируют в широком диапазоне значений (от 79 до 200 и от 21 до 51 соответственно). Поэтому в данном конкретном случае будет естественным использовать эти характеристики в качестве основных для окончательного выбора оптимального портфеля.

Необходимо подчеркнуть, что какой бы алгоритм выбора оптимального портфеля ни был принят к реализации при разработке автоматизированной торговой стратегии, от него во многом зависит, какой из вариантов дельта-нейтрального портфеля будет в конечном итоге использован для открытия позиций.

Глава 2. Оптимизация

2.1. Обзор основных понятий

Проблема выбора наилучшего решения возникает во всех сферах человеческой деятельности. Поиск оптимальных решений постоянно производится как на индивидуальном уровне, так и в масштабах различных финансовых, производственных и общегосударственных структур. Несмотря на многочисленный арсенал методов, разработанных для поиска оптимальных решений, единственного подхода, одинаково пригодного для всех случаев, не существует. Это связано и с разнообразием задач, и с ограниченностью средств для их решения (машинного времени, памяти и т. п.). Дать строго определенные, формализованные методы решения задач оптимизации может только синтетический подход, основанный на комбинированном применении достижений различных разделов математики.

Задача оптимизации может заключаться в поиске определенной структуры объекта (структурной оптимизации) или последовательности действий (календарной оптимизации). Однако в контексте построения автоматизированных торговых стратегий наибольший интерес представляет параметрическая оптимизация. В этом случае поиск наилучшего решения осуществляется путем выбора значений для величин, составляющих совокупность числовых параметров.

2.1.1. Параметрическая оптимизация

В зависимости от постановки задачи параметры могут быть действительными числами (например, доля капитала, инвестируемого в определенную стратегию), целыми числами (например, количество дней от момента открытия позиции до истечения опционов или количество базовых активов) или величинами нечисловой природы, но сводимыми к числовым (например, если параметр имеет смысл решения использовать или не использовать определенный тип опционной комбинации, он может быть представлен целым числом со значениями 1 и 0 соответственно). Количество параметров может быть ограничено одним (одномерная оптимизация), но в большинстве случаев их больше (многомерная оптимизация).

Постановка задачи оптимизации может быть безусловной или содержать определенные ограничения. В частности, не все возможные комбинации значений параметров являются допустимыми. В силу существующих ограничений некоторые из них могут быть неприемлемы либо нереализуемы. Такие узлы исключаются из оптимизации. В этом случае говорят об условной оптимизации. Такого рода ограничения могут иметь вид равенств:

x1 + x2 +… + xn = M,

где х принимает значение 0 или 1 в зависимости от того, открывается ли торговая позиция для i-го базового актива. Смысл ограничения в том, что общее число базовых активов в точности равно M.

Ограничения могут принимать вид неравенств:

c1x1 + c2x2 +… + cnxn ≤ K.

Здесь сi – это цена соответствующего опциона, а xi – количество проданных или купленных опционов. При этом знак может указывать, является ли данная позиция длинной (плюс) или короткой (минус). Смысл ограничения в том, что общая стоимость опционного портфеля не превышает установленной величины К.

Ограничения также могут накладываться на диапазон значений, которые может принимать тот или иной параметр (в предыдущей главе мы часто пользовались понятием «область допустимых значений»). Такие ограничения часто используются при разработке автоматизированных торговых стратегий. Они могут накладываться исходя из практических соображений, поскольку сокращение множества допустимых значений позволяет уменьшить количество вычислений и время оптимизации. Кроме того, ограничения могут быть вызваны особенностями разрабатываемой стратегии или требованиями системы управления рисками (например, доля коротких комбинаций в составе портфеля может быть ограничена определенной пороговой величиной). И наконец, ограничения на область допустимых значений могут возникать по причине недоступности данных, необходимых для расчета целевой функции, или невозможности такого расчета для определенных значений параметра.

Для того чтобы избежать путаницы в применении некоторых понятий, часто используемых в литературе при описании оптимизационных процедур, ниже приводится краткое описание смысла, который мы вкладываем

Вы читаете Опционы
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату