Вторым способом внедрения прогноза в стратегию является изменение структуры комбинации. Предположим, что торговая стратегия сгенерировала сигнал на открытие короткой позиции по комбинации длинный стрэнгл, и при этом имеется прогноз, указывающий на высокую вероятность роста цены базового актива. Данный прогноз может быть учтен путем смещения страйка продаваемого опциона колл в сторону предполагаемого роста цены. Это позволит снизить возможные убытки по данному опциону в случае, если прогноз окажется верным. В то же время уменьшается размер премии, получаемой от продажи данного опциона. Поэтому эффективность такого метода будет зависеть от того, какой из двух эффектов окажется более сильным. Другим способом изменения структуры комбинации является создание асимметричной комбинации, где количество продаваемых опционов колл меньше, чем количество продаваемых путов.
Если торговый сигнал требует создания длинной комбинации, то все происходит наоборот – страйк колла смещается в противоположную сторону от ожидаемого роста цены. Это позволит увеличить возможную прибыль по данному опциону (хотя стоимость его покупки будет выше). При создании асимметричной комбинации количество покупаемых опционов колл должно быть больше, чем количество покупаемых путов.
Можно изобрести множество способов внедрения прогноза путем сочетания корректировки распределения с изменением структуры комбинации. Рассматриваемые в этом разделе примеры частично направленной стратегии, основываются на следующих принципах. Предположим, что прогноз будущих ценовых движений строится на основе анализа исторических ценовых рядов. При этом предполагается, что для каждого базового актива вероятность определенного движения цены (например, роста на 5 % либо падения на 7 % и т. д.) зависит от частоты реализации движений такого размера в прошлом. Собирая вместе все прошлые ценовые движения, мы предполагаем, что в прогнозируемом будущем движения могут реализоваться с такими вероятностями, каковы были реальные частоты их наблюдений в прошлом. По сути, такая форма прогноза реализуется в виде эмпирического распределения. Свойства эмпирического распределения и методика его построения описаны в нашей предыдущей книге «Опционы: системный подход к инвестициям» и в статье «An empirical solution to option pricing» (Futures, 2009).
В отличии от логнормального, эмпирическое распределение в большинстве случаев является асимметричным и имеет неправильную форму с многочисленными локальными пиками и впадинами (рис. 1.5.2). Эти иррегулярности отражают прошлые ценовые тренды. Например, смещение распределения вправо или наличие локальных пиков с правой стороны распределения указывают на преобладание в прошлом трендов повышения цены. Таким образом, представление прогноза в форме эмпирического распределения уже само по себе является корректировкой стандартного логнормального распределения.
Как было сказано выше, изменить структуру комбинации можно несколькими способами. Мы будем использовать простой подход, который, по нашему мнению, лучше всего подходит в сочетании с эмпирическим распределением, – создание асимметричных комбинаций. Для того чтобы применить этот подход на практике, необходимо для каждой комбинации построить несколько вариантов, отличающихся друг от друга соотношением опционов колл и пут (до сих пор во всех примерах, рассмотренных для маркет-нейтральной стратегии, мы использовали равное соотношение). После этого следует рассчитать значение критерия для каждого варианта данной комбинации и выбрать тот из них, для которого значение критерия будет максимальным.
Рассмотрим несколько примеров. Ограничим количество рассматриваемых вариантов тремя: (1) количество коллов втрое превышает количество путов (соотношение Сall-to-Put равно 3); (2) равное соотношение коллов и путов (соотношение Call-to-Put равно 1), (3) количество коллов втрое меньше количества путов (соотношение Call-to-Put равно 0,33). Предположим, что для акции IBM необходимо выбрать наилучший вариант для комбинации «длинный стрэнгл». (Говоря «выбрать», мы подразумеваем генерирование сигнала на открытие торговой позиции.) На рис. 1.5.2 показана функция плотности вероятности эмпирического распределения и платежные функции трех вариантов длинного стрэнгла. Распределение было построено 1 апреля 2010 г. на основе 120-дневного исторического периода. Комбинации построены из опционов, истекающих 16 апреля 2010 г., используя страйки Put 125 и Call 130. В данном случае наибольшее значение критерия «математическое ожидание прибыли на основе эмпирического распределения» было получено для комбинации, в которой количество колов втрое превышает количество путов. Выбор именно этого варианта комбинации объясняется формой эмпирического распределения. В целом данное распределение имеет правое смещение (кроме того, имеется локальный пик в районе цены $132). Такая форма распределения прогнозирует рост цены базового актива. Следовательно, комбинация, в которой количество опционов колл превышает количество путов имеет больший потенциал прибыльности (в случае если прогноз окажется верным).
Во втором примере мы использовали другой базовый актив (акция Google), для которого необходимо выбрать наилучший вариант комбинации «короткий стрэнгл». Функция плотности вероятности эмпирического распределения и платежные функции трех вариантов короткого стрэнгла показаны на рис. 1.5.3. Так же как и в предыдущем примере, распределение было построено 1 апреля 2010 г. Комбинации также были созданы из опционов, истекающих 16 апреля 2010 г. (страйки Put 560 и Call 570). В данном случае, хотя форма эмпирического распределения отличается от распределения, полученного в предыдущем примере (сравни рис. 1.5.2 и 1.5.3), оно также смещено в правую сторону. Это означает, что прогноз, внедряемый в структуру частично направленной стратегии, указывает на высокую вероятность роста цены базового актива. В такой ситуации целесообразно продать больше опционов пут. Если прогноз действительно реализуется на практике, то цена акции вырастет, и убыток может быть понесен по проданному (в меньшем количестве) колу. Проданные же путы скорее всего истекут вне денег и принесут повышенную прибыль (поскольку были проданы в большем количестве). В полном соответствии с этими рассуждениями значение критерия оказалось наибольшим для комбинации, в которой количество колов втрое меньше количества путов.
1.5.3. Соотношение опционов колл и пут в портфеле
До сих пор мы рассматривали соотношение коллов и путов на уровне отдельных комбинаций. При неравном соотношении коллов и путов платежная функция комбинации становится асимметричной (рис. 1.5.1 и 1.5.2). Соответственно, объединение нескольких комбинаций может привести к существенным изменениям формы платежной функции портфеля. Причем изменения эти могут быть самые разные. Говоря о платежной функции портфеля, мы подразумеваем зависимость прибыли/убытка портфеля от некоторого индекса. Для построения такой платежной функции необходимо рассчитать зависимость прибыли/убытка каждой отдельно взятой комбинации от значений индекса. Это делается с помощью беты (более подробно этот вопрос будет освещен при описании концепции индексной дельты). Полученные таким образом платежные функции комбинаций обладают свойством адитивности. Простое их суммирование позволяет получить платежную функцию портфеля.
При объединении однотипных комбинаций с одинаковым соотношением коллов и путов результирующая платежная функция будет напоминать по форме функции исходных комбинаций. На верхнем левом графике рис. 1.5.4 серыми линиями показаны платежные функции двух коротких стрэнглов с соотношением колов и путов 1: 3. Такое соотношение приводит к тому, что левое плечо обеих функций имеет гораздо больший угол наклона по сравнению с правым плечом (это означает, что снижение индекса приводит к большим убыткам, чем его