На этом проблемы генетического программирования не заканчиваются. Получается, что даже его успехи, возможно, совсем не такие «генетические», как хотелось бы эволюционистам. Возьмем разработку электронных схем — знаковый успех генетического программирования. Как правило, даже относительно простые схемы требуют огромного объема поиска, причем неясно, насколько мы обязаны результатами грубой силе, а насколько — генетическому интеллекту. Чтобы ответить растущему хору критиков, Коза включил в свою опубликованную в 1992 году книгу Genetic Programming эксперименты, показывающие, что генетическое программирование превосходит случайно сгенерированных кандидатов в проблеме синтеза булевых схем, но отрыв был небольшой. В 1995 году на Международной конференции по машинному обучению (International Conference on Machine Learning, ICML) в Лейк-Тахо Кевин Лэнг опубликовал статью о том, что восхождение на выпуклые поверхности побеждает генетическое программирование в тех же самых программах, причем часто со значительным перевесом. Коза и другие эволюционисты неоднократно пытались опубликовать свои работы в материалах ICML, ведущем мероприятии в этой области, но, к их растущему разочарованию, их постоянно отклоняли из-за недостаточной эмпирической обоснованности. Коза и так был раздосадован тем, что его не публикуют, поэтому работа Лэнга просто вывела его из равновесия. На скорую руку он написал статью на 23 страницах в два столбца, в которой опровергал выводы Лэнга и обвинял рецензентов ICML в нарушении научной этики, а затем положил по экземпляру на каждое кресло в конференц-зале. Статья Лэнга (а может, и ответ Коза — как посмотреть) стали последней каплей: инцидент в Тахо привел к окончательному расхождению между эволюционистами и остальным сообществом ученых, занимающихся машинным обучением. Эволюционисты хлопнули дверью. Специалисты по генетическому программированию начали проводить собственные конференции, которые впоследствии слились с конференциями по генетическим алгоритмам в GECCO — Genetic and Evolutionary Computing Conference. А мейнстрим машинного обучения во многом просто забыл об их существовании. Печальная развязка, но не первый случай в истории, когда секс приводит к разводу.
Может быть, секс не преуспел в машинном обучении, но в утешение можно сказать, что он все же сыграл видную роль в эволюции технологий. Порнография стала непризнанным «приложением-приманкой» Глобальной сети, не говоря уже о печатной прессе, фотографии и видео. Вибратор был первым ручным электрическим устройством, на столетие опередившим мобильные телефоны. Мотороллеры получили распространение в послевоенной Европе, особенно в Италии, потому что на них молодые пары могли скрыться от своих семей. Одной из «приманок» огня, который миллион лет назад открыл Homo erectus, было, несомненно, то, что с его помощью легче стало назначать свидания. Несомненно и то, что индустрия секс-ботов станет мотором, толкающим человекоподобных роботов ко все большей реалистичности. Просто секс, по-видимому, не средство, а цель технологической эволюции.
Воспитание природы
У эволюционистов и коннекционистов есть одно важное сходство: и те и другие разрабатывают обучающиеся алгоритмы, вдохновленные природой. Однако потом их пути расходятся. Эволюционисты сосредоточены на получении структур: для них тонкая настройка результата путем оптимизации параметров имеет второстепенное значение. Коннекционисты же предпочитают брать простые, вручную написанные структуры со множеством соединений и предоставлять весовому обучению делать всю работу. Это все тот же извечный вопрос о приоритете природы и воспитания, на этот раз в машинном обучении, и у обоих оппонентов имеются веские аргументы.
С одной стороны, эволюция породила много удивительных вещей, самая чудесная из которых — вы сами. С кроссинговером или без него, получение структур путем эволюции — существенный элемент Верховного алгоритма. Мозг может узнать все, но он не может получить еще один мозг. Если как следует разобраться в его архитектуре, можно просто воплотить его в «железе», но пока мы очень далеки от этого, поэтому однозначно надо обратиться за поддержкой к компьютерной симуляции эволюции. Более того, путем эволюции мы хотим получать мозг для роботов, системы с произвольными сенсорами и искусственный сверхинтеллект: нет причин держаться за устройство человеческого мозга, если для этих целей что-то подойдет лучше. С другой стороны, эволюция работает ужасно медленно. Вся жизнь организма дает всего лишь один фрагмент информации о его геноме: приспособленность, выраженную в числе потомков. Это колоссальная расточительность, которую нейронное обучение избегает путем получения информации в месте использования (если можно так выразиться). Как любят подчеркивать коннекционисты, например Джефф Хинтон, нет смысла носить в геноме информацию, если мы легко можем получить ее из органов чувств. Когда новорожденный открывает глаза, в его мозг начинает потоком литься видимый мир, и нужно просто все организовать, а в геноме должна быть задана архитектура машины, которая займется этой организацией.
Как и в дебатах по поводу наследственности и воспитания, ни у одной стороны нет полного ответа, и нужно понять, как соединить оба фактора. Верховный алгоритм — это не генетическое программирование и не обратное распространение ошибки, однако он должен включать основные элементы обоих подходов: обучение структурам и весам. С традиционной точки зрения первую часть дает природа, которая создает мозг в ходе эволюции, а затем за дело берется воспитание, заполняя мозг информацией. Это можно легко воспроизвести в алгоритмах машинного обучения. Сначала происходит обучение структуре сети с использованием (например) восхождения на выпуклые поверхности для определения, какие нейроны соединены друг с другом: надо попробовать добавить в сеть все возможные новые соединения, сохранить те, которые больше всего улучшают ее результативность, и повторить процедуру. Затем нужно узнать вес соединений методом обратного распространения ошибки — и новенький мозг готов к использованию.
Однако в этом месте и в естественной, и в искусственной эволюции появляется важная тонкость: вес надо узнать для всех рассматриваемых структур-кандидатов, а не только для последней, чтобы посмотреть, как хорошо она будет справляться с борьбой за выживание (в природе) или с обучающими данными (в искусственной системе). На каждом этапе нам будут нужны структуры, которые работают лучше всех не до, а после нахождения весов. Поэтому в реальности природа не предшествует воспитанию: они скорее перемежаются, и каждый раунд обучения «воспитанием» готовит сцену для следующего раунда обучения «природой», и наоборот. Природа эволюционирует ради воспитания, которое получает. Эволюционный рост ассоциативных зон коры головного мозга основан на нейронном обучении в сенсорных зонах — без этого он был бы бесполезным. Гусята постоянно ходят за своей мамой (поведение, сформировавшееся в ходе эволюции), но для этого они должны ее узнавать (выученная способность). Если вместо гусыни вылупившиеся птенцы увидят человека, они будут следовать за ним: это замечательно показал Конрад Лоренц[83]. В мозге новорожденного свойства среды уже закодированы, но косвенно: эволюция оптимизирует мозг для извлечения этих свойств из ожидаемых вводных. Аналогично для алгоритма, который итерационно учится новым структурам и весам, каждая новая структура неявно — функция весов, которые он получил в предыдущих раундах.
Из всех возможных геномов лишь немногие соответствуют жизнеспособным организмам, поэтому типичный ландшафт приспособленности представляет собой обширные равнины с периодическими резкими пиками, что очень затрудняет эволюцию. Если начать в Канзасе путь с завязанными глазами, не имея представления, в какой стороне Скалистые горы, можно очень долго блуждать в поисках предгорий и только потом начать восхождение. Однако если соединить эволюцию с нейронным обучением, результат будет очень интересный. Если вы стоите на плоской поверхности, но горы не слишком далеко, нейронное обучение может вас туда привести, причем чем ближе вы к горам, тем с большей вероятностью до них доберетесь. Это как способность видеть горизонт: в степях Уичито такая способность вам не пригодится, зато в Денвере вы увидите вдали Скалистые горы и направитесь к ним. Денвер, таким образом, станет намного более подходящим местом, чем Канзас,