микропроцессоры, потому что их гибкость с лихвой компенсирует относительную неэффективность. Если бы нам приходилось разрабатывать ASIC для каждого нового приложения, информационная революция никогда бы не состоялась. Верховный алгоритм — тоже не лучший алгоритм для изучения конкретного элемента знаний. Эффективнее был бы алгоритм, в который уже заложена большая часть этого знания (или знание целиком: тогда данные будут избыточны). Однако вся суть в том, чтобы вывести знание из данных путем индукции. Это легче и дешевле, поэтому чем более обобщен алгоритм машинного обучения, тем лучше.

Еще более радикальный кандидат — скромный вентиль ИЛИ-НЕ, логический переключатель, который на выходе дает единицу, если на входе два нуля. Не забывайте, что все компьютеры построены из логических вентилей в виде транзисторов и все вычисления можно свести к комбинациям элементов И, ИЛИ и НЕ. Вентиль ИЛИ-НЕ — это просто элемент ИЛИ, за которым следует элемент НЕ: отрицание дизъюнкции[38], как в предложении «Я счастлив, если не голоден и не болен». Элементы И, ИЛИ и НЕ можно реализовать с использованием вентилей ИЛИ-НЕ, поэтому этот вентиль может делать все. Вообще говоря, некоторые микропроцессоры только его и используют. Так почему же он не может стать Верховным алгоритмом? Ведь он, безусловно, непревзойден в своей простоте. К сожалению, вентиль ИЛИ-НЕ — Верховный алгоритм не в большей степени, чем кубик лего — универсальная игрушка. Конечно, детали конструктора как кирпичики и из них многое можно построить, но гора элементов самопроизвольно ни во что не сложится. То же относится к другим простым вычислительным схемам, например сетям Петри[39] и клеточным автоматам[40].

Перейдем к более сложным кандидатам. Например, к запросам, на которые может ответить любой хороший движок базы данных, или простых алгоритмов в статистическом пакете. Разве их недостаточно? Это более крупные детали лего, но по-прежнему всего лишь кирпичики. Движок базы данных никогда не откроет ничего нового: он просто сообщает то, что знает. Даже если все люди в базе данных смертны, ему не придет в голову экстраполировать эту черту на других людей (проектировщики баз данных побледнели бы от самой этой мысли). Статистика в основном заключается в проверке гипотез, которые кто-то сначала должен сформулировать. Статистические пакеты умеют выполнять линейную регрессию и другие простые процедуры, но они мало чему могут научиться, сколько бы данных им ни предоставили. Качественные пакеты входят в серую зону между статистикой и машинным обучением, но все равно остается множество видов знания, которое они не могут открыть.

Ладно, давайте начистоту. Верховный алгоритм — это уравнение U(X) = 0. Он уместится не то что на футболке, а даже на почтовой марке! Уравнение U(X) = 0 говорит, что определенная (возможно, очень сложная) функция U какой-то (возможно, очень сложной) переменной X равна нулю. К этой форме можно свести любое уравнение. Например, F = ma можно записать в виде F – ma = 0, поэтому, если считать F – ma функцией U переменной F — вуаля: U(F) = 0. В целом X может быть любыми вводными данными, а U — любым алгоритмом, поэтому, конечно, Верховный алгоритм не может быть более общим, чем это уравнение, а поскольку мы ищем самый общий алгоритм из всех возможных, это должен быть он. Конечно, я шучу, но конкретно этот неудачный кандидат указывает на одну из реальных опасностей в машинном обучении: создание настолько общего обучающегося алгоритма, что он окажется недостаточно содержательным, чтобы быть полезным.

Так какое же минимальное содержание может иметь обучающийся алгоритм, чтобы оставаться полезным? Законы физики? В конце концов, все в этом мире им подчиняется (по крайней мере, мы так думаем), они породили эволюцию, а в ходе эволюции — головной мозг. Может быть, Верховный алгоритм и правда скрыт в законах физики, но, если это так, нам надо выразить его явно. Если просто подбрасывать законам физики данные, новых законов не получишь. На это можно посмотреть следующим образом: возможно, основная теория какой-то дисциплины — просто законы физики, облеченные в удобную для этой дисциплины форму. Но если это действительно так, нам нужен алгоритм, который найдет кратчайший путь из данных этой дисциплины к ее теории, и непонятно, смогут ли законы физики в этом помочь. Еще один аспект заключается в следующем: если бы законы физики были иными, Верховный алгоритм все равно во многих случаях смог бы их открыть. Математики любят говорить, что Бог может нарушать законы физики, но даже он не бросает вызов законам логики. Возможно, это так, но законы логики предназначены для дедукции, а нам нужно что-то подобное для индукции. 

Пять «племен» машинного обучения

Конечно, охоту за Верховным алгоритмом не надо начинать с нуля. У нас за плечами несколько десятилетий исследований машинного обучения, на которые можно опереться. Лучшие умы планеты посвятили свои жизни разработке обучающихся алгоритмов, а кто-то даже утверждает, что универсальный алгоритм уже у него в руках. Хотя мы стоим на плечах гигантов, такие заявления надо принимать с долей скептицизма, и тогда возникает вопрос: как понять, что Верховный алгоритм найден? Мы поймем это тогда, когда один и тот же обучающийся алгоритм, в котором допустимо только менять параметры, на основе минимальных исходных данных сможет научиться понимать видео и текст так же хорошо, как человек, сделает важные открытия в биологии, социологии и других науках. Очевидно, что по этим стандартам ни один алгоритм машинного обучения пока нельзя признать Верховным, даже в том маловероятном случае, что он уже найден.

Крайне важно понимать, что от Верховного алгоритма не требуется уметь с чистого листа решать новую задачу. Это, наверное, была бы слишком высокая планка для любого обучающегося алгоритма, и это, разумеется, совершенно не похоже на то, как работают сами люди. Например, язык не существует в вакууме, и мы не поймем фразу без знания мира, к которому она относится. Таким образом, когда Верховный алгоритм будет учиться читать, он может опираться на то, что до этого он уже научился видеть, слышать и управлять роботами. Точно так же ученый не просто вслепую подбирает модели к данным — чтобы решить проблему, он оперирует всеми знаниями в данной области. Делая открытия в биологии, Верховный алгоритм тоже сначала может прочитать всю литературу по предмету, какую пожелает, полагаясь на уже освоенный навык чтения. Верховный алгоритм — не просто пассивный потребитель данных. Он может взаимодействовать с окружающей средой и активно искать данные, которые ему нужны, как робот-ученый Адам, о котором мы упоминали выше, или просто ребенок, исследующий окружающий мир.

Поиски Верховного алгоритма сложны, но их оживляет соперничество разных научных школ, действующих в области машинного обучения. Важнейшие из них — символисты, коннекционисты, эволюционисты, байесовцы и аналогисты. У каждого «племени» есть набор фундаментальных постулатов и конкретная проблема, которая больше всего его волнует. «Племя» находит решение для этой проблемы в идеях союзных научных дисциплин, и у него есть верховный алгоритм, который воплощает это решение.

Для символистов интеллект сводится к манипулированию символами — так математики решают уравнения, заменяя одни выражения другими. Символисты понимают, что нельзя учиться с нуля: данные должны сопровождаться исходными знаниями. Они научились встраивать уже имеющееся знание в машинное обучение и на лету соединять фрагменты знания, чтобы решать новые задачи. Их верховный алгоритм — это обратная дедукция: она определяет недостающее для дедукции знание, а затем как можно в большей степени его обобщает.

Для коннекционистов обучение — то, чем занимается головной мозг, и поэтому они считают, что этот орган надо воспроизвести путем обратной инженерии. Мозг учится, корректируя силу соединений между нейронами, поэтому ключевая проблема — понять, какие соединения за какие ошибки отвечают, и соответствующим образом их изменить. Верховный алгоритм коннекционистов — метод обратного распространения ошибки, который сравнивает выходные данные системы с желаемыми, а потом последовательно, слой за слоем, меняет соединения

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату