Культурные пищевые растения

Хотя можно и поспорить с тем, что почти одновременное начало сельского хозяйства и конец Эры мега-млекопитающих – это совпадение, и ничего кроме совпадения, в пользу версии о наличии причинно-следственной связи можно привести ещё один сильный аргумент. То, что вымирание многих крупных животных, от которых люди зависели как от источника пищи, произошло одновременно со значительными климатическими изменениями (оказавшими влияние на запасы растений и мелких животных, также используемых в пищу), возможно, не было просто случайностью.

Хотя пищевые злаки вроде дикой пшеницы и ячменя собирали целых 12000 лет назад, похоже, что первое одомашнивание растений случилось примерно 10000 лет назад, во времена, когда последние мамонты, мастодонты и множество других крупных видов животных ещё вымирали в Северной Америке и только что исчезли в Европе и Азии. Это было время, когда народы, занимавшиеся собирательством, начали собирать семена диких растений и снова высевать их в землю. Процесс одомашнивания, похоже, включал естественную гибридизацию нескольких диких видов, за которой следовал отбор желательных качеств людьми. Таким образом, «одомашнивание» растений, как и в случае с животными, включало генетическое видоизменение дикого вида путём очень грубой формы естественного отбора: растения с полезными особенностями сохранялись; те, у которых их не было, уничтожались. Поскольку тенденция в модификации растений включала увеличение размеров съедобных или пригодных для использования частей, большинство видов растений потеряло способность самостоятельно расселяться с помощью семян, а защитные механизмы вроде колючек были в основном утрачены.

Количество видов домашних растений относительно невелико. Существует более двухсот тысяч видов покрытосеменных, или цветковых растений, хотя лишь десять из них дают львиную долю человеческой пищи. В числе этих десяти – травы и хлебные злаки, такие, как пшеница, рис и кукуруза; для них всех характерны семена, богатые крахмалом и белком. Хлебные злаки высаживаются на 70 % обрабатываемых земель в мире и производят примерно 50 % калорий, используемых человечеством. Другие растения из первой десятки – это сахарный тростник, ямс, картофель, бананы, соя и маниок. По всему миру в пищу человеком используется примерно три тысячи видов растений, но лишь примерно двести из них стали домашними.

Трансгенная революция: строим сорняки

Генная инженерия, которую наши предки использовали для того, чтобы придать новые свойства своим возделываемым пищевым растениям и домашним животным, была грубой, но эффективной: сохрани благоприятствуемые вариации и позволь им размножаться; уничтожь остальных. Но в двадцатом веке появился новый тип генной инженерии – тот, который изменяет непосредственно сам геном. Этот новый путь привнесения новизны охватил сельскохозяйственные районы Земли, и его последствия, несомненно, будут непредсказуемыми. Может случиться так, что способы, которыми трансгенная революция привнесёт новизну в биоту, станут почти невообразимыми – и не все из них окажутся желательными. Она стоит, например, на грани создания «суперсорняков».

Современная генетическая технология позволяет перемещать генетический материал от одного вида к другому. Эта новая генетическая информация непрерывно объединяется в геноме второго вида, придавая ему новые особенности. Всякий раз, как это делается, новый тип организма с различными намерениями и целями выпускается в биосферу. Организм, преобразованный таким образом, называется трансгенным растением, животным или микроорганизмом. Эти трансгенные существа не возникали путём естественного процесса эволюции, но они являются одним из самых зловещих объектов для работы будущей эволюции на этой планете.

Трансгенные организмы возможны из-за существования определённых генов, способных «перепрыгивать» из одной хромосомы в другую. Первое открытие прыгающих генов было сделано американским генетиком Барбарой МакКлинток в 1940-х годах. МакКлинток изучала генетику маиса (кукурузы) и наблюдала явление, когда некоторые гены, такие, как гены, отвечающие за цвет семян, демонстрировали способность к перемещению из одной хромосомы в другую. Значением этого открытия в значительной степени пренебрегали до 1970-х годов, когда оно было вновь независимо открыто другими исследователями, изучающими способы выработки некоторыми бактериями устойчивости к антибиотикам. Гены, или участки ДНК, кодирующие эти специфические признаки у бактерий, не «скачут» как таковые; вместо этого они производят собственные копии, которые встраиваются в других местах, как на хромосомах, так и в других органеллах, несущих генетический код и называемых плазмидами.

Открытие этих прыгающих генов, получивших техническое название транспозонов, дало начало целой волне исследований в 1980-х и 1990-х годах. Эти специфические цепочки ДНК способны неоднократно вырезать и встраивать самих себя в различные участки генетического кода организма. Их сделало известными – и, в конечном счёте, возможно, печально известными – то, что транспозоны одного организма можно использовать, чтобы встроить новую генетическую информацию в ДНК совершенно неродственных организмов.

Многие из исследований, использующих транспозоны, проводились на плодовых мушках. Плодовая мушка Drosophila – один из основных объектов экспериментальной генетики, поскольку она быстро размножается и её генетический код хорошо известен. В начале 1980-х годов

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату