установленных к настоящему времени, по-видимому, заключает в себе до сих пор неизвестные «другие законы физики», которые, однако, раз они открыты, должны будут составить такую же неотъемлемую часть этой науки, как и первые.

Упорядоченность, основанная на «упорядоченности»

Эта довольно тонкая цепь рассуждений трудна для понимания во многих отношениях. Все последующие страницы посвящены тому, чтобы сделать ее ясной. Предварительно, грубо, но не совсем неверно она может быть изложен таким образом:

В первой главе было объяснено, что законы физики, как мы их знаем, это статистические законы[34]. Они связаны с естественной тенденцией вещей переходить к неупорядоченности.

Но для того чтобы примирить высокую устойчивость носителей наследственности с их малыми размерами и обойти тенденцию к неупорядоченности, нам пришлось «изобрести молекулу», необычно большую молекулу, которая должна быть шедевром высоко дифференцированной упорядоченности, охраняемой волшебной палочкой квантовой теории. Законы случайности не обесцениваются этим «изобретением», но изменяется их проявление. Физик хорошо знает, что классические законы физики модифицируются квантовой теорией, особенно при низкой температуре. Этому имеется много примеров. Жизнь представляется одним из них, особенно удивительным. Жизнь представляет собой упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но частично и на существовании упорядоченности, которая поддерживается все время.

Для физика – но только для него – я надеюсь пояснить свою точку зрения словами: живой организм представляется макроскопической системой, частично приближающейся в своих проявлениях к чисто механическому (по контрасту с термодинамическим) поведению, к которому стремятся все системы, когда температура приближается к абсолютному нулю и молекулярная неупорядоченность снимается.

Не физику покажется трудным поверить, что обычные законы физики, которые он рассматривает как образец ненарушимой точности, должны основываться на статистической тенденции материи переходить к неупорядоченности. Я дал примеры этому в главе I. Общим принципом здесь является знаменитый Второй закон термодинамики (принцип энтропии) и его столь же знаменитое статистическое обоснование. В § 54–58 я попытаюсь дать беглый очерк приложения принципа энтропии к основным особенностям поведения живого организма, забыв на момент все, что известно о хромосомах, наследственности и т. д.

Живое вещество избегает перехода к равновесию

Что является характерной чертой жизни? Когда мы говорим про кусок материи, что он живой? Когда он продолжает «делать что-либо», двигаться, обмениваться веществами с окружающей средой и т. д., и все это в течение более долгого времени, чем по нашим ожиданиям мог бы делать неодушевленный кусок материи при подобных же условиях. Если неживую систему изолировать или поместить в однородные условия, всякое движение, обычно, очень скоро прекращается в результате различного рода трений; разности электрических или химических потенциалов выравниваются, вещества, которые имеют тенденцию образовывать химические соединения, образуют их, температура становится однообразной благодаря теплопроводности. После этого система в целом угасает, превращается в мертвую инертную массу материи. Достигнуто неизменное состояние, в котором не возникает никаких заметных событий.

Физик называет это состоянием термодинамического равновесия или «максимальной энтропии».

Практически состояние этого рода обычно достигается очень быстро. Теоретически очень часто это еще не абсолютное равновесие, еще не действительный максимум энтропии. Но окончательное приближение к равновесию происходит очень медленно. Оно может потребовать часы, годы, столетия… Дадим один пример, – пример, в котором приближение идет еще очень быстро: если стакан, наполненный чистой водой, и другой, наполненный подслащенной водой, поместить вместе в герметически закрытом ящике при постоянной температуре, то сначала кажется, что ничего не происходит, и возникает впечатление полного равновесия. Но через день или около этого становится заметным, как чистая вода, вследствие более высокого давления ее паров, постепенно испаряется и конденсируется в растворе сахара. Последний переливается через край. Только после того как чистая вода испарится полностью, сахар достигнет своей цели – равномерно распределится по всей доступной жидкой воде.

Эти конечные этапы медленного приближения к равновесию никогда не могли бы быть приняты за жизнь, и мы можем пренебречь ими здесь. Я упоминаю о них с целью оградить себя от обвинения в неточности.

Оно питается «отрицательной энтропией»

Именно в силу того, что организм избегает быстрого перехода в инертное состояние «равновесия», он и кажется столь загадочным: настолько загадочным, что с древнейших времен человеческая мысль допускала, будто в организме действует какая-то специальная, не физическая, сверхъестественная сила (ins viva, энтелехия); некоторые придерживаются, этого мнения и до сих пор.

Как же живой организм избегает перехода к равновесию? Ответ прост: благодаря еде, питью, дыханию и (в случае растений) ассимиляции. Это выражается специальным термином «метаболизм». Греческое слово ??????????? означает «перемена» или «обмен». Обмен чего? Первоначально, без сомнения, подразумевался обмен веществ (например, по-немецки метаболизм – Stoffwechsel[35]). Но представляется нелепостью, чтобы существенным был именно обмен веществ. Любой атом азота, кислорода, серы и т. д. так же хорош, как любой другой того же рода. Что могло бы быть достигнуто их обменом? В прошлом некоторое время наше любопытство удовлетворяли утверждением, что мы питаемся энергией. В

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату