другом, и именно на величину действительно исчезнувшего механического движения. И само вычисление доказывает, что сумма произведений массы на квадрат скорости выражает общее количество движения правильно, а сумма произведений массы на скорость – неправильно.

Таковы приблизительно все случаи, в которых употребляется в механике mv. Рассмотрим теперь несколько случаев, в которых применяется mv2.

Когда ядро вылетает из пушки, то при своем полете оно потребляет количество движения, пропорциональное mv2, все равно, ударится ли оно в твердую мишень или же перестанет двигаться благодаря сопротивлению воздуха и силе тяжести. Если железнодорожный поезд сталкивается с другим, стоящим неподвижно поездом, то сила столкновения и соответствующее разрушение пропорциональны его mv2. Точно так же мы имеем дело с mv2 при вычислении всякой механической силы, потребной для преодоления некоторого сопротивления.

Но что собственно значит это удобное и столь распространенное среди механиков выражение: преодоление некоторого сопротивления?

Когда, поднимая некоторый груз, мы преодолеваем сопротивление тяжести, то при этом исчезает некоторое количество движения [Bewegungsmenge], некоторое количество механической силы, равное тому количеству ее, которое может быть снова порождено при помощи прямого или косвенного падения поднятого груза с достигнутой им высоты на его первоначальный уровень. Оно измеряется полупроизведением массы груза на квадрат достигнутой при падении конечной скорости, mv2/2.

Итак, что же произошло при поднимании груза? Механическое движение, или механическая сила исчезла как таковая. Но она не превратилась в ничто: она превратилась в механическую силу напряжения, как выражается Гельмгольц, в потенциальную энергию, как выражаются новейшие авторы, в эргаль, как называет ее Клаузиус, и в любое мгновение она может быть превращена любым механически допустимым способом обратно в то же самое количество механического движения, которое было необходимо для порождения ее. Потенциальная энергия есть только отрицательное выражение для живой силы, и наоборот.

24-фунтовое пушечное ядро ударяется со скоростью 400 м в секунду в железный борт броненосца толщиной в 1 м и при этих условиях не оказывает никакого видимого действия на броню судна. Таким образом, здесь исчезло механическое движение, равное mv2/2, т. е., так как 24 фунта = 12 кг[337], равное 12x400x400x1/2 = 960 000 килограммометров. Что же сталось с этим движением? Незначительная часть его пошла на то, чтобы вызвать сотрясение в железной броне и произвести в ней перемещение молекул. Другая часть послужила для того, чтобы раздробить ядро на бесчисленные осколки. Но самая значительная часть превратилась в теплоту, нагрев ядро до температуры каления. Когда пруссаки при переправе на остров Альс в 1864 г. направили свою тяжелую артиллерию против бронированных бортов «Рольфа Краке» [338], то при каждом удачном попадании они видели в темноте сверкание внезапно раскалявшегося ядра, а Уитворт доказал уже раньше путем опытов, что разрывные снаряды, направляемые против броненосцев, не нуждаются в запальнике: раскаленный металл сам воспламеняет заряд взрывчатого вещества. Если принять механический эквивалент единицы теплоты равным 424 килограммометрам[339], то вышеприведенному количеству механического движения соответствуют 2264 единицы теплоты. Теплоемкость железа равняется 0,1140; это значит, что то же самое количество теплоты, которое нагревает 1 кг воды на 1 °C и которое принимается за единицу теплоты, способно нагреть на 1° Цельсия 1/0,1140 = 8,772 кг железа. Следовательно, вышеприведенные 2264 единицы теплоты поднимают температуру 1 кг железа на 8,772x2264=19 860 °C или же 19 860 кг железа на 1 °C. Так как это количество теплоты распределяется равномерно между броней судна и ударившим в нее ядром, то последнее нагревается на 19860/2x12 = 828 °C, что уже представляет довольно значительную степень накаливания. Но так как передняя, ударяющая половина ядра получает во всяком случае значительно большую часть теплоты – примерно вдвое больше, чем задняя половина, – то первая нагреется до 1104°, а вторая до 552 °C, что вполне достаточно для объяснения явления раскаливания, даже если мы сделаем значительный вычет в пользу действительно произведенной при ударе механической работы.

При трении точно так же исчезает механическое движение, появляющееся снова в виде теплоты. Как известно, Джоулю в Манчестере и Кольдингу в Копенгагене удалось при помощи возможно более точного измерения обоих взаимно соответствующих процессов впервые установить экспериментальным образом с известным приближением механический эквивалент теплоты.

То же самое происходит при получении электрического тока в магнитоэлектрической машине посредством механической силы, например, паровой машины. Производимое в определенное время количество так называемой электродвижущей силы пропорционально – а если выразить его в той же самой единице измерения, то и равно – потребленному в это же самое время количеству механического движения. Мы можем также представить себе, что это последнее производится не паровой машиной, а опускающейся в силу тяжести гирей. Механическая сила, отдаваемая этой гирей, измеряется живой силой, которую она приобрела бы, если бы свободно упала с такой же высоты, или же силой, необходимой, чтобы снова поднять ее на первоначальную высоту, т. е. измеряется в обоих случаях через mv2/2.

Таким образом, мы находим, что механическое движение действительно обладает двоякой мерой, но убеждаемся также, что каждая из этих мер имеет

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату