набросал проект аппарата («Acta Eruditorum», 1690), который – будь мера
Картезианцы протестовали изо всех сил, и тогда загорелся знаменитый, длившийся много лет спор, в котором принял участие в первом своем сочинении («Мысли о правильной оценке живых сил», 1746)[327] также и Кант, хотя он и неясно разбирался в этом вопросе. Теперешние математики относятся с изрядной дозой презрения к этому «бесплодному» спору, который «затянулся больше чем на сорок лет, расколов математиков Европы на два враждебных лагеря, пока наконец Д’Аламбер своим «Трактатом о динамике» (1743), точно каким-то суверенным решением, не положил конец этому
Но ведь казалось бы, что не может все же целиком сводиться к бесполезному спору о словах спор, начатый таким мыслителем, как Лейбниц, против такого мыслителя, как Декарт, и столь занимавший такого человека, как Кант, что он посвятил ему свою первую печатную работу – довольно объемистый том. И действительно, как согласовать, что движение имеет две противоречащие друг другу меры, что оно оказывается пропорциональным то скорости, то квадрату скорости? Зутер слишком легко отделывается от этого вопроса: он утверждает, что обе стороны были правы и обе же – неправы; «выражение «живая сила» сохранилось, тем не менее, до настоящего времени; но
Таким образом,
Возьмем, однако, в руки спасительный «Трактат о динамике»[330] и вглядимся пристальнее в «суверенное решение» Д’Аламбера. Оно находится
В тексте, – читаем мы там, – весь вопрос совсем не рассматривается из-за «совершенной бесполезности его для механики». (стр. XVII)
Это вполне верно для
Но так как столь крупные ученые занимались этим вопросом, то он, Д’Аламбер, все же хочет вкратце разобрать его в Предисловии. Под силой движущихся тел можно, если ясно мыслить, понимать только их способность преодолевать препятствия или сопротивляться им. Поэтому сила не должна измеряться ни через
Но существует три рода препятствий: 1) непреодолимые препятствия, которые совершенно уничтожают движение и которые уже поэтому не могут иметь отношения к рассматриваемой проблеме; 2) препятствия, сопротивления которых как раз достаточно для прекращения движения и которые это делают мгновенно: это случай равновесия; 3) препятствия, прекращающие движение лишь постепенно: это случай замедленного движения. (стр. XVII– XVIII) «Но все согласны с тем, что равновесие между двумя телами имеет место тогда, когда произведения их масс на их виртуальные скорости, т. е. на скорости, с которыми они стремятся двигаться, у обоих равны. Следовательно, при равновесии произведение массы на скорость – или, что одно и то же, количество движения – может представлять силу. Все согласны также с тем, что в случае замедленного движения число преодоленных препятствий пропорционально квадрату скорости, так что тело, которое сжало, например, при известной скорости одну пружину, сможет при двойной скорости сжать сразу или последовательно не две, а четыре пружины, подобные первой; при тройной скорости – девять пружин и т. д. Отсюда сторонники живых сил» (лейбницианцы) «умозаключают, что сила действительно движущихся тел вообще пропорциональна произведению массы на квадрат скорости. По существу, в чем заключалось бы неудобство, если бы мера сил была различной в случае равновесия и в случае замедленного движения? Ведь если желать рассуждать, руководствуясь только ясными идеями, то под словом
Но Д’Аламбер все-таки еще в достаточной мере философ, чтобы понимать, что так легко ему не отделаться от противоречия двоякой меры для одной и той же силы. Поэтому, повторив по существу лишь то, что уже сказал Лейбниц, – ибо его «равновесие» есть совершенно то же самое, что «мертвые давления» Лейбница, – он вдруг переходит на сторону картезианцев и предлагает следующий выход:
Произведение