пространство. Таким образом, более теплая туманность сгустится позже, чем более холодная, и, следовательно, теплота, являясь препятствием для сгущения, оказывается, если стать на точку зрения Гельмгольца, не плюсом, а минусом «запаса силы». Следовательно, когда Гельмгольц предполагает возможность того, что в первоначальной туманности имелось – в форме теплоты – некоторое количество
Придадим же всему этому «запасу сил» – как опытно доказуемому, так и теоретически возможному – один и тот же знак для того, чтобы стало возможным сложение. Так как пока что мы еще не в состоянии обратить теплоту, не в состоянии заменить ее отталкивание эквивалентным притяжением, то нам придется совершить это обращение для обеих форм притяжения. В таком случае мы должны взять вместо силы всеобщего притяжения, вместо силы химического сродства и вместо той теплоты, которая, возможно, существовала как таковая сверх этих сил уже в самом начале, просто сумму имевшегося в газовом шаре, в момент его обособления, отталкивательного движения, или так называемой энергии. С этим согласуются и выкладки Гельмгольца, когда он вычисляет то «согревание, которое должно было получиться благодаря предполагаемому первоначальному сгущению тел нашей системы из рассеянного вещества туманности». Сводя таким образом весь «запас сил» к теплоте, к отталкиванию, он делает возможной и мысль о том, чтобы к этому «запасу сил» прибавить еще гипотетический «запас силы теплоты». А в таком случае произведенное им вычисление выражает тот факт, что 453/454 всей имевшейся первоначально в газовом шаре энергии, т. е. отталкивания, уже излучено в виде теплоты в мировое пространство, или, выражаясь точнее, что сумма всего притяжения в теперешней солнечной системе относится к сумме всего имеющегося еще в ней отталкивания как 454:1. Но в таком случае эти выкладки прямо противоречат тексту доклада, к которому они приложены в качестве доказательства.
Но если представление о силе даже у такого физика, как Гельмгольц, дает повод к подобной путанице понятий, то это является лучшим доказательством того, что оно вообще не может иметь научного применения во всех областях исследования, выходящих за пределы вычислительной механики. В механике причины движения принимают за нечто данное и интересуются не их происхождением, а только их действиями. Поэтому если ту или иную причину движения называют силой, то это нисколько не вредит механике как таковой; но благодаря этому привыкают переносить это обозначение также и в область физики, химии и биологии, и тогда неизбежна путаница. Мы уже видели это и увидим еще не один раз.
О понятии работы мы будем говорить в следующей главе.
Мера движения. – Работа[322]
«Напротив, я до сих пор всегда находил, что основные понятия этой области» (т. е. «основные физические понятия работы и ее неизменности») «с большим трудом даются тем лицам, которые не прошли через школу математической механики, несмотря на все усердие с их стороны, на все их способности и даже на довольно высокий уровень естественно-научных знаний. Нельзя не признать также того, что это – абстракции совершенно особого рода. Ведь даже такому мыслителю, как И. Кант, понимание их далось нелегко, о чем свидетельствует его полемика с Лейбницем по этому вопросу».
Так говорит Гельмгольц («Научно-популярные доклады», вып. II, Предисловие).
Таким образом, мы вступаем теперь в очень опасную область, тем более, что у нас нет возможности провести читателя «через школу математической механики». Но, может быть, удастся показать, что там, где дело идет о понятиях, диалектическое мышление приводит по меньшей мере к столь же плодотворным результатам, как и математические выкладки.
Галилей открыл, с одной стороны, закон падения, согласно которому пройденные падающими телами пути пропорциональны квадратам времен падения. Наряду с этим он выставил, как мы увидим, не вполне соответствующее этому закону положение, что количество движения какого-нибудь тела (его impeto или momento[323]) определяется массой и скоростью, так что при постоянной массе оно пропорционально скорости. Декарт принял это последнее положение и признал вообще произведение массы движущегося тела на скорость мерой его движения.
Гюйгенс нашел уже, что в случае упругого удара сумма произведений масс на квадраты скоростей остается неизменной до удара и после него и что аналогичный закон имеет силу для различных других случаев движения соединенных в одну систему тел.
Лейбниц был первым, кто заметил, что Декартова мера движения противоречит закону падения. Но, с другой стороны, нельзя было отрицать того, что Декартова мера оказывается во многих случаях правильной. Поэтому Лейбниц разделил движущие силы на мертвые и живые. Мертвыми силами были «давления», или «тяга», покоящихся тел; за меру их он принимал произведение массы на скорость, с которой двигалось бы тело, если бы из состояния покоя оно перешло в состояние движения; за меру же живой силы – действительного движения тела – он принял произведение массы на квадрат скорости. И эту новую меру движения он вывел прямо из закона падения.
«Необходима», – рассуждал Лейбниц, – «одна и та же сила как для того, чтобы поднять тело весом в четыре фунта на один фут, так и для того, чтобы поднять тело весом в один фунт на четыре фута. Но проходимые телом пути пропорциональны квадрату скорости, ибо если тело упало на четыре фута, то оно приобрело двойную скорость по сравнению с той скоростью, которую оно имеет, когда падает на один фут. Но при своем падении тела приобретают силу, с помощью которой они могут снова подняться на ту же самую высоту, с которой упали; следовательно, силы пропорциональны квадрату скорости» (Зутер, «История математических наук», ч. II, стр. 367)[324].
А далее Лейбниц доказал, что мера движения