Итак, мы отыскали
Таким же образом находим:
Обратно: нахождение угла, которого

И, следовательно, неизв. угол = 66°33’ (с округлением 66°30’).
Таким же образом найдем, что угол, тангенс которого 0,86, равен 40°+ 60 ?2/3= 40°40’ и т. п.
(В виду малой точности таблиц, числа минут надо округлять до целых десятков).
Применения
Рассмотрим теперь несколько задач, при решении которых применяется таблица тангенсов и котангенсов (такие вычисления называются т р и г о н о м е т р и ч е с к и м и).
104. Найти величину острых углов треугольника, катеты которого 16 см и 23 см.
Р е ш е н и е. Тангенс меньшего из искомых углов (черт. 231)

откуда (по таблице) искомый угол
105. Телеграфный столб 8 м высоты отбрасывает тень длиною 13,5 м. Под каким углом лучи солнца встречают землю?
Р е ш е н и е сводится, очевидно, к нахождению угла,
106. Перпендикуляр, опущенный из вершины треугольника, имеет длину 62 см и делит противолежащую сторону на отрезки, длина которых 38 см и 29 см. Найти углы треугольника.
Р е ш е н и е. Сначала находим (черт. 232) величину угла
(как найти третий угол?).
107. Острый угол прямоугольного треугольника 48°, прилежащий катет – 83 см. Найти другой катет.
Р е ш е н и е (черт. 231). Если угол
BC/AB = BC/83
откуда

108. Найти сторону правильного 12-угольника, описанного около круга, радиус которого 80
Р е ш е н и е (черт. 233). Если сторона 12-угольника
Проведя