Теория, выдвинутая Опариным, использовала результаты многих исследований геологов, геохимиков и астрономов. И Опарин, и Холдейн (совершенно независимо друг от друга) пришли к выводу, что, видимо, первичная атмосфера Земли не имела свободного кислорода. Скорее всего, первичную атмосферу составляли углекислый газ, метан, азот, аммиак, окись углерода, пары воды, водород, и, возможно, пары очень ядовитой синильной кислоты. Ни одна форма современной жизни, может быть, за исключением очень немногих бактерий, и минуты не смогла бы просуществовать в такой убийственной атмосфере. Но именно эта, казалось бы, совершенно убийственная атмосфера и послужила необходимым сырьем для будущей жизни. Ультрафиолетовое излучение Солнца и грозовые явления в первичной атмосфере, содержавшей вышеперечисленные газы, непременно должны были привести к массовому образованию сложных углеводородных соединений, в том числе белков или белковоподобных соединений и комплексных коллоидных систем – «коацерватов».
В начале 50-х годах американский ученый С. Миллер поставил очень простой и убедительный опыт. В колбе из жаростойкого стекла кипела вода. Пары воды постепенно конденсировались в верхней части прибора, где в атмосфере из водорода, метана и аммиака между вольфрамовыми электродами непрерывно проскакивала миниатюрная молния, получаемая от разрядов высоковольтной катушки. Уже через несколько дней вода в колбе желтела. В ней возникали разнообразные полимерные соединения кремния (благодаря растворяющемуся, пусть и в ничтожных количествах, стеклу колбы), а беспрерывные реакции в искусственной атмосфере приводили к появлению ряда простейших органических веществ, в том числе аминокислот и различных кислот – от муравьиной и уксусной до янтарной и мочевины.
Опыт Миллера раскрепостил ученых.
В подобных опытах использовались самые разные атмосферы.
Результаты оказались не просто интересными, результаты оказались очень обнадеживающими. Экспериментаторам удалось воспроизвести синтез практически всех аминокислот, входящих в состав белка, даже таких, которые природа в естественном процессе возникновения жизни не использовала. То есть было подтверждено главное положение теории Опарина: возникновение первичного примитивного «бульона» – не случайность, а закономерность.
Конечно, аминокислоты еще не жизнь, но они – первая ступенька к жизни.
В мелких первичных морях под воздействием перечисленных условий вполне могли возникать вещества, лежащие в основе белка, а там и первичные клетки, удачно названные Опариным коацерватами; от латинского – «объединяться», «слипаться». Бернал, правда, считал, что такие самые первые клетки могли образовываться только путем оседания органических молекул на частицах глины, а Берг полагал, что жизнь вообще могла иметь наземное, даже подземное происхождение, что удачно должно было уберегать ее от воздействия мощного солнечного излучения, но это, в конечном счете, были детали.
«В тридцатые и в сороковые годы, – писал Грэхем, – эти идеи помогли Опарину разработать теорию эволюции коацерватов, но в пятидесятые и в шестидесятые, когда бурно стала развиваться область молекулярной биологии, такие взгляды привели к немалым осложнениям. Структура ДНК в том виде, как она была представлена Уотсоном и Криком, выглядела вполне механистически, и их подход был совершенно редукционистским. С их точки зрения, подход Опарина был нестрогим и умозрительным. Более того, молекулярные биологи зачастую считали кристаллизованные вирусы, кусочки ДНК, живыми, в то время как они едва ли подходили под опаринское определение жизни, как –
Знаменитый Московский симпозиум 1957 года дал возможность выговориться ученым, придерживающимся самых разных точек зрения. «Говоря о жизни вне Земли, – даже и об этом зашла речь (академик Павловский), – мыслят о тех формах жизни, которая есть на Земле. Но нет ничего невероятного в том, что и на каких-то планетах Вселенной могла возникнуть органическая материя. Если вместо понятия
Заключая одну из самых шумных дискуссий симпозиума, Опарин сказал:
«Проблема сущности жизни неотделима от проблемы ее происхождения. Сущность жизни можно понять только в тесной связи с познанием ее возникновения. Однако, как мы видели, весьма спорным является вопрос, на каком уровне усложнения эволюционирующей материи возникла жизнь – на мономолекулярном или на комплексном многомолекулярном. Присуща ли жизнь только единичной молекуле белка, нуклеиновой кислоты или нуклепротеида, а остальная часть протоплазмы есть лишь безжизненная среда? Или же жизнь присуща многомолекулярной системе, где белки и нуклеиновые кислоты играют исключительно важную роль, но все же роль части, а не целого, подобную роли органа, выполняющего ответственную функцию в целом организме? Может вызвать некоторое сожаление, что эти точки зрения на данном совещании не только не слились, но даже еще и не сблизились между собой, но ясно, что для этого необходима еще большая работа и вряд ли это можно было сделать при первой нашей встрече…
Сейчас я хотел бы формулировать в двух словах свою точку зрения, которую я подробно изложил и обосновал в своей книге. Мне представляется, что первично абиогенным путем могли возникнуть не те, в функциональном отношении в высшей степени совершенно построенные нуклеиновые кислоты или белки, которые мы сейчас выделяем из организмов, а только довольно беспорядочно построенные полинуклеотиды и полипептиды, из которых образовались многомолекулярные исходные системы, и только на эволюции этих систем возникли функционально совершенные формы строения молекул, а не наоборот. В противном случае мы должны будем мыслить эволюцию подобно тому, как это себе представлял Эмпедокл, согласно которому сперва возникли руки, ноги, глаза и уши, а затем в результате их объединения возник организм…»
Смерть Опарина, последовавшая в 1980 году, не дала ученому возможности довести свою работу то того уровня, когда смелая гипотеза действительно становится подтвержденной многочисленными и убедительными фактами теорией. Тем не менее, гипотеза Опарина надолго определила принципиальные пути дальнейших исследований.
В 1950 году работы академика Опарина были удостоены премии им. А. Н. Баха и премии им. И. И. Мечникова. В 1952 году он был избран вице-президентом Международной федерации ученых, а в 1969 году получил звание Героя Социалистического труда. Имел академик Опарин и другие высокие правительственные награды, но в памяти многочисленных своих коллег и учеников он остался тем ученым, который на знаменитый вопрос Луи Пастера: «Может ли материя организоваться сама по себе?» – прямо ответил:
«Да, может!»
Лев Давидович Ландау
Выдающийся физик-теоретик.
Родился в Баку 22 января 1908 года.
Исключительные способности Ландау проявил очень рано. В тринадцать лет он закончил среднюю школу и год занимался в экономическом техникуме. В 1922 году его приняли в Бакинский университет. Учился сразу на двух факультетах – на химическом и на физико-математическом. В 1924 году перевелся в Ленинградский университет. В 1927 году, окончив университет, начал работать аспирантом у академика Иоффе, возглавлявшего Ленинградский физико- технический институт.
В те годы в Ленинграде работали только два крупных физика – Д. С. Рождественский и А. Ф. Иоффе. Оба были чистыми экспериментаторами. Отсутствие отечественной теоретической школы заставляло молодых физиков обращаться к зарубежному опыту. Наиболее привлекательными для многих были школы, созданные Нильсом Бором в Копенгагене, Петером Дебаем в Цюрихе, Арнольдом Зоммерфельдом в Мюнхене и Паулем Эренфестом в Лейдене. Получил в 1929 году зарубежную командировку и Ландау. В течение почти двух лет он работал в Копенгагене под руководством Нильса Бора.
Бор сразу разглядел в молодом русском физике задатки крупного таланта, хотя ему не нравилась экстравагантность Ландау, любившего осмеивать и оспаривать все устоявшееся. От острого языка Ландау пострадали многие, однако, многие вспоминали о шутках Ландау с удовольствием, тем более, что юмор его был весьма своеобразен. «…В последний день, – вспоминал академик Я. Б. Зельдович, – я повел его в бухгалтерию института. – С изумлением я увидел Дау (так звали физика друзья), пересчитывающего полученные деньги. „Дау, вы ведь учили нас, что считать надо только по порядку величины, но тут и так ясно, что вам дали не в 10 раз меньше положенного“. Дау смутился на мгновение и тут же ответил: „Деньги стоят в экспоненте“.
Сам Ландау всю жизнь относился к Нильсу Бору с непреходящим уважением. Он считал его своим единственным учителем. В 1933 и в 1934 годах Ландау опять побывал в Копенгагене, а когда Бор в 1934, 1937 и в 1961 годах приезжал в Советский Союз, непременно сопровождал его во всех поездках.
Работая в Копенгагене, Ландау постоянно общался с выдающимися, а главное, молодыми, как он сам, физиками – Гайзенбергом, Паули, Пайерлсом, Блохом, Вигнером. Там же Ландау встречался с Дираком, даже разговаривал однажды с Эйнштейном, хотя, по словам самого Ландау, ничем не заинтересовал его. Работая у Бора, он выполнил работу по диамагнетизму электронного газа и (совместно с Пайерлсом) – по релятивистской квантовой механике.
В 1932 году вернулся в Россию.
В 1934 году без защиты диссертации получил степень доктора физико-математических наук.
С 1932 по 1937 год Ландау руководил теоретическим отделением Харьковского физико-технического института. Здесь Ландау вывел известное кинетическое уравнение при кулоновском взаимодействии частиц, а также выполнил теорию фазовых переходов второго рода и теорию промежуточного состояния в сверхпроводимости. В Харьковском институте работали в те годы многие талантливые физики, среди них Л. В. Шубников, А. И. Лейпунский, К. Д. Синельников, М. Руэман, Л. В. Розенкевич, Б. Подольский. Не случайно именно в Харькове был построен первый советский электростатический линейный ускоритель, на котором в 1932 году были подтверждены результаты смелых экспериментов Кокрофта и Уолтона по расщеплению ядра. В Харьковском институте бывали Бор, Дирак, Эренфест, Хаутерманс, Вайскопф, – несомненно, это был самый крупный, после Москвы и Ленинграда, физический центр страны. К сожалению, репрессии конца тридцатых нанесли институту столь чудовищный урон, что институт уже никогда не оправился от этого урона: физики Шубников, Горский и Розенкевич были расстреляны, Вайссберг, Руэман и Хаутерманс арестованы и высланы в Германию. Подверглись арестам директор института академик Обреимов и его заместитель Лейпунский.
В 1937 году академик Капица пригласил Ландау в Москву – руководить теоретическим отделением Института физических проблем.
Здесь Ландау работал до самой кончины.
Здесь он получил соотношение между плотностью уровней в ядре и энергией возбуждения, создал (наряду с Х. Бете и В. Вайскопфом) статистическую теорию ядра, выполнил исключительно важные исследования по теории фазовых переходов. В 1957 году предложил закон сохранения комбинированной четкости (одновременно с А. Саламом, Т. Ли и Ч. Янгом) и независимо от них же выдвинул теорию двухкомпонентного нейтрино.
Здесь же Ландау создал знаменитый теоретический семинар.
Но в апреле 1938 года Ландау был арестован, как было сказано в обвинении – «…за шпионскую деятельность в пользу Германии». Одновременно с Ландау был арестован физик Румер. Как впоследствии смеялся Ландау: «…мы внезапно перешли с физического листа римановой поверхности на нефизический». В заключении Ландау пробыл ровно год и вышел на свободу только благодаря активным действиям академика Капицы. Прямо в день ареста Ландау Капица написал