Выше я упоминал, что названия степеней в 'Арифметике' Диофанта были аддитивные, т.е.квадрато- кубом он называл 5-ю степень (5=2+3).
Такие же названия степеней применяли ат-Туси, ал-Каши и другие математики, писавшие на арабском языке.
Однако индийские математики применяли более сложную систему названий степеней: для тех степеней, которые можно представить как произведения чисел 2 и 3, они пользовались мультипликативными названиями, т.е. называли квадрато-кубом не 5-ю, а 6-ю степень (2.3=6), но для тех степеней, которые нельзя представить в виде произведений чисел 2 и 3, они пользовались аддитивными названиями с добавлением специального термина, указывающего, что это название аддитивное.
Французский историк науки Поль Таннери обнаружил один случай применения мультипликативных названий у греков - он нашел текст современника Диофанта александрийского христианского епископа Анатолия, который называл 5-ю степень первым невыразимым (protos alo- gos), 6-ю степень квадрато- кубом, а 7-ю степень - вторым невыразимым (deuteros alogos).
Текст, обнаруженный Таннери, позволил мне проанализировать названия степеней у итальянских и немецких алгебраистов эпохи Возрождения. Итальянский математик Лука Пачоли (1454-1514) в своей книге 'Сумма [знаний] по арифметике, геометрии, отношениям и пропорциональности' называл квадрат censо, куб - cubo, 4-ю степень - censo de censo, 5-ю степень - primo relato, 6-ю степень -censo de cubo, 7-ю степень - secondo relato и т.д.
Джироламо Кардано (1501-1576) в своем 'Великом искусстве алгебраических правил' пользовался аналогичными латинскими названиями, вместо слова relato он писал relatum. Я в статьях и в книге 'История математики с древнейших времен' объяснял эти термины как искаженные переводы термина alogos. Это слово можно перевести не только как 'невыразимое', но и как 'не-отношение'. По-видимому, первоначально это слово было переведено в его втором значении словами irrelato и irrelatum, которые впоследствии потеряли приставку ir-.
От итальянских алгебраистов, которые, следуя арабам, называли неизвестную величину 'вещью' (cosa), aлгебра попала в Германию, где ее стали называть Coss - от итальянского слова cosa, поэтому немецких алгебраистов той эпохи называют коссистами. Как и итальянские алгебраисты, коссисты пользовались мультипликативной системой названий степеней. Они называли неизвестную величину Res ('вещь' на латыни), квадрат - Zensus, куб - Cubus, 4-ю степень - Zеnsus Zensi, 5-ю - Sursolidum, 6-ю Zensus Cubi, 7-ю - Bissursolidum и далее все 'невыразимые' степни - словом sursolidum с добавлением сокращений латинских числительных ter-, quadr-, quint- и т. д. Слово sursolidum первоначально имело вид surdesolidum, от латинских слов surdus - 'глухой', которым часто переводили греческое слово alogos (в частности, для обозначения иррациональных величин и чисел), слово solidum - 'тело' появилось, по-видимому, по аналогии со словом 'куб'. Впоследствии слово sursolidum стали понимать как 'сверхтело' и в латинских текстах заменять его словом supersolidum.
Эта 'гипергеометрическая' терминология привела самого крупного коссиста Михаэля Штифеля (1487- 1567) к идее многомерного пространства. В своей обработке книги 'Coss' Христофа Рудольфа Штифель предложил 'выйти за пределы куба' и, называя куб 'телесной точкой', рассматривать далее 'телесную линию', 'телесный квадрат', 'телесный куб' и т. д.
Сферическая геометрия и тригонометрия в Европе
В моей книге 'История неевклидовой геометрии' я подробно рассмотрел историю сферической геометрии и тригонометрии в Европе.
Теорему косинусов сферической тригонометрии, которая в трудах индийских и арабских астрономов встречалась только в астрономических правилах, впервые сформулировал как математическую теорему Региомонтан (1436 -1476) в 'Пяти книгах о треугольниках всякого рода'. Чертеж Региомонтана к этой теореме совпадает с чертежом ал-Баттани в его астрономических таблицах. Поэтому европейцы приписывали эту теорему ал-Баттани и называли ее 'теоремой Альбатегния'. Эта теорема для сферического треугольника АВС со сторонами а, b, с выражается формулой cosa = cosb cosc + sinb sine cos A.
Двойственную терему косинусов, выражаемую для того же сферического треугольника формулой
cosA = -cosBcosC + sinBsinCcosa,
впервые доказал Франсуа Виет (1548-1603 ) в его 'VIII книге ответов на различные математические вопросы'.
Площадь сферического треугольника АВС, выражаемая формулой
S =r2(A+B+C-n),
где углы А, В и С выражены в радианной мере, нашел Альбер Жирар (15951632) в работе 'О мере поверхности сферических треугольников и многоугольников'.
Далее в 'Истории неевклидовой геометрии' я рассматривал работы по сферической тригонометрии Леонарда Эйлера (1707-1783) и математиков его школы.
Поверхности второго порядка
Выше мы упоминали, что Архимед сжигал римские корабли используя свойства параболоида вращения. Он определил параболоиды и эллипсоиды вращения и полости двуполостных гиперболоидов вращения в трактате 'О сфероидах и коноидах', где называл эллипсоиды вращения сфероидами, параболоиды вращения - прямоугольными коноидами, а полости гиперболоидов вращения - тупоугольными коноидами. Однополостные гиперболоиды вращения впервые рассматривал Дж. Валлис (1616 -1703), который называл их цилиндроидами.
В статье о геометрических работах Эйлера я изучал вопрос об открытии Эйлером поверхностей второго порядка общего вида. Эйлер рассматривал поверхности второго порядка, получаемые сжатием из поверхностей вращения, и гиперболический параболоид, который нельзя получить таким образом. Эти поверхности были впервые описаны Эйлером во 2-м томе 'Введения в анализ бесконечных'.
Современные названия этих поверхностей были предложены Гаспаром Монжем (1746-1818).
Теория параллельных линий в Европе и неевклидова геометрия
В 'Истории неевклидовой геометрии' я подробно рассматривал попытки доказательств V постулата Евклида европейскими математиками, из которых отмечу доказательства математиков XIV в. Леви бен Гершона из Монпелье и Альфонсо из Вальядолида, написанные на иврите под несомненным влиянием арабских трактатов Ибн ал-Хайсама, и доказательство Джона Валлиса на основе явно сформулированного им постулата о том, что для всякой фигуры можно построить подобную фигуру любых размеров.
В той же книге я изложил историю открытия гиперболической геометрии Карлом Фридрихпм Гауссом (1777 -1855), Николаем Ивановичем Лобачевским (1792 -1856) и Яношем Бойяи (1802-1869), историю интерпретаций этой геометрии Эудженио Бельтрами (1835-1900), Феликсом Клейном (1849-1925) и Анри Пуанкаре (1854 - 1912) и историю развития эллиптической геометрии в работах Бернгарда Римана (1826- 1866), Вильяма Кингдона Клиффорда (1845-1879) и Ф.Клейна, а также историю обобщений этих геометрий.
Лобачевский обнаружил связь между тригонометрией в открытом им пространстве и сферической тригонометрией. Он придавал этой связи очень важное значение, так как видел в ней доказательство непротиворечивости открытой им геометрии. Я специально исследовал этот вопрос и установил, что причина связи состоит в том, что гиперболическая геометрия имеет место на сфере мнимого радиуса в псевдоевклидовом пространстве.
Геометрические преобразования в Европе
В 'Истории неевклидовой геометрии' я подробно рассматривал историю геометрических преобразований в Европе - развитие проективной геометрии в трудах Жирара Дезарга (1591 -1661), Блеза Паскаля (1623 - 1662), Исаака Ньютона (1643 -1727), Жана Виктора Понселе(1788 -1867),
Августа Фердинанта Мебиуса (1790 -1868), развитие аффинной геометрии в трудах Алексиса Клода Клеро (1713-1765), Л.Эйлера и А.Ф.Мебиуса, развитие конформной геометрии в трудах Л.Эйлера, Жана Лерона Даламбера(1717 -1783), Мебиуса, Жозефа Лиувилля (1809 - 1882).
Я рассмотрел также 'Эрлангенскую программу' Ф.Клейна, согласно которой всякая геометрия определяется своей группой преобразований, и 'Теорию групп преобразований' Софуса Ли (1842 - 1899), в которой было основано учение о группах Ли.
В научной биографии Эли Картана (1869 - 1951) я подробно изучал развитие теории групп Ли и