10. Квантовая механика и черные дыры15
Первые тридцать лет XX века стали свидетелями появления трех теорий, радикально изменивших взгляд человека на физику и на саму реальность. Физики все еще пытаются изучить и собрать воедино их последствия. Эти три теории – специальная теория относительности (1905), общая теория относительности (1915) и теория квантовой механики (1926). Альберт Эйнштейн в большой степени разработал первую, полностью создал вторую и сыграл значительную роль в развитии третьей. И все же Эйнштейн никак не мог принять квантовую механику из-за наличия в ней элемента случайности и неопределенности. Его чувства выразились в часто цитируемой фразе: «Бог не играет в кости». Однако большинство физиков с готовностью приняли и специальную теорию относительности, и квантовую механику, потому что эти теории описывали прямо наблюдаемые эффекты. Общую же теорию относительности большинство оставили без внимания, потому что она представлялась слишком сложной в математическом смысле, ее было не проверить в лаборатории, и это была чисто классическая теория, то есть казалось, что она не стыкуется с квантовой механикой. Поэтому общая теория относительности была в загоне почти пятьдесят лет.
Огромное расширение астрономических наблюдений, начавшееся в шестидесятых годах, стало причиной возрождения интереса к классической теории относительности, так как оказалось, что многие ранее неизвестные явления, такие как квазары, пульсары и компактные источники рентгеновского излучения, говорят о существовании очень сильных гравитационных полей, описать которые может лишь общая теория относительности. Квазары – это похожие на звезды объекты, которые должны быть в несколько раз ярче целых галактик, если они в самом деле удалены на то расстояние, о котором говорит смещение их спектра к красному краю; пульсары – это быстро мигающие остатки взрыва сверхновой, предположительно сверхплотные нейтронные звезды; компактные источники рентгеновского излучения, открытые приборами с космических кораблей, могут быть тоже нейтронными звездами или, возможно, гипотетическими объектами еще большей плотности, а именно черными дырами.
Одной из проблем, с которой столкнулись физики, старавшиеся применить общую теорию относительности к этим открытым или гипотетическим объектам, стали попытки состыковать ее с квантовой механикой. За последние несколько лет были проведены работы, дающие надежду на то, что не так далеко время, когда мы получим полную непротиворечивую теорию гравитации, согласующуюся с общей теорией относительности для макроскопических объектов и, можно надеяться, свободную от математических бесконечностей, преследующих другие квантовые теории поля. Эти работы основаны на некоторых недавно открытых квантовых эффектах, имеющих отношение к черным дырам, что обеспечивает замечательную связь черных дыр с законами термодинамики.
Позвольте мне кратко описать, как могли возникнуть черные дыры. Представьте себе звезду с массой в десять раз больше солнечной. Большую часть своей жизни, то есть около миллиарда лет, звезда генерирует в своих недрах тепло, преобразуя водород в гелий. Высвобожденная энергия создает достаточное давление, чтобы уравновешивать созданную звездой силу тяжести и поддерживать размеры звезды с радиусом примерно в пять раз больше солнечного. Скорость для отрыва от поверхности такой звезды будет около 1000 км/с. То есть объект, выстреленный с поверхности звезды вертикально вверх со скоростью меньше 1000 км/с, будет притянут гравитационным полем звезды назад и вернется на поверхность, в то время как объект, вылетевший с большей скоростью, улетит в бесконечность.
Когда звезда выработает все свое ядерное топливо, ничто уже не сможет поддерживать внутреннее давление, и под действием собственной силы тяжести она начнет сжиматься. По мере сжатия звезды сила тяжести на ее поверхности становится все больше и необходимая для отрыва скорость возрастает. Когда радиус уменьшится до 30 км, необходимая для отрыва скорость достигнет 300 000 км/с – скорости света. После этого никакой свет, испускаемый звездой, не сможет уйти в бесконечность, а будет притягиваться обратно гравитационным полем. Согласно специальной теории относительности, ничто не может двигаться быстрее света, так что если не может вырваться свет, то не может и ничто другое.
В результате получается черная дыра – область пространства-времени, откуда ничто не может улететь в бесконечность. Границы черной дыры называются горизонтом событий. Он соответствует фронту тех световых волн от звезды, которым не удалось улететь в бесконечность, но которые и не упали обратно, а парят на радиусе Шварцшильда: 2
Существуют довольно убедительные наблюдения, позволяющие предположить, что черные дыры примерно такого размера существуют как источник рентгеновского излучения в системе двойной звезды, известной под именем X-I Лебедя. Может быть также огромное множество разбросанных по Вселенной очень маленьких черных дыр, которые образовались в результате коллапса не звезды, а сильно сжатой области в горячей плотной среде, предположительно существовавшей вскоре после Большого Взрыва, из которого произошла Вселенная. Такие «первобытные» черные дыры представляют огромный интерес с точки зрения их квантового эффекта, который я опишу ниже. Черная дыра весом в миллиард тонн (примерно масса горы) имела бы радиус около 10-13 сантиметра (размер нейтрона или протона). Она могла бы двигаться по орбите вокруг Солнца или центра Галактики.
Первый намек, что между черными дырами и термодинамикой может существовать связь, сделало математическое открытие 1970 года, утверждающее, что площадь поверхности горизонта событий, границ черной дыры, обладает свойством всегда возрастать, когда в черную дыру падает дополнительная материя или излучение. Более того, если две черные дыры столкнутся и сольются в одну, площадь горизонта событий вокруг этой новой черной дыры будет больше, чем сумма площадей двух первоначальных. Эти свойства предполагают, что между площадью горизонта событий черной дыры и понятием энтропии в термодинамике существует сходство. Энтропию можно рассматривать как меру беспорядка системы или, что то же самое, как недостаток знаний о ее точном состоянии. Знаменитый второй закон термодинамики гласит, что энтропия со временем всегда возрастает.
Аналогию между свойствами черной дыры и законами термодинамики расширили Джеймс М. Бардин из Вашингтонского университета, Брендон Картер, работающий сейчас в Мьюдонской обсерватории, и я. Первый закон термодинамики гласит, что малое изменение энтропии системы сопровождается пропорциональным изменением энергии системы. Коэффициент пропорциональности называется температурой системы. Бардин, Картер и я нашли схожий закон, касающийся изменения массы черной дыры и площади горизонта событий. Здесь коэффициентом пропорциональности является величина, называемая поверхностной гравитацией, которая является мерой силы гравитационного поля на горизонте событий. Если допустить, что площадь горизонта событий аналогична энтропии, то поверхностная гравитация окажется аналогичной температуре. Сходство усиливается тем фактом, что поверхностная гравитация оказывается одинаковой во всех точках горизонта событий, так же как при тепловом равновесии температура одинакова по всему телу.
Хотя между энтропией и площадью горизонта событий существует явное сходство, нам не очевидно, как площадь можно отождествлять с энтропией черной дыры. Что для черной дыры означает энтропия? Решающее предположение сделал в 1972 году Якоб Д. Бекенштейн, учившийся тогда на последнем курсе Принстонского университета, а ныне работающий в Негевском университете в Израиле. Суть примерно такова: когда в результате гравитационного коллапса получается черная дыра, она быстро устанавливается в стационарное состояние, характеризуемое всего тремя параметрами: массой, моментом импульса и электрическим зарядом. Кроме этих трех, черная дыра не сохраняет никаких других свойств сжавшегося объекта. Данное заключение, известное как теорема «Черная дыра не имеет волос», было подтверждено нашей совместной работой с Брендоном Картером, Вернером Израэлем из Альбертского университета и Дэвидом К. Робинсоном из лондонского Кингс-колледжа.
Из теоремы об отсутствии волос вытекает, что при гравитационном коллапсе теряется большой