математическим обществом. То был второй раз, когда присуждалась эта премия; в первый раз награжден был Ли.

Киллинг умер в 1923 году. Даже сегодня его имя известно не так хорошо, как оно того заслуживает. Он был одним из величайших когда-либо живших математиков. По крайней мере, его наследие бессмертно.

Глава 11

Служащий бюро патентов

К началу двадцатого столетия группы начали проявлять себя в фундаментальной физике — области знания, которой в силу этого предстояло претерпеть не меньшую трансформацию, чем та, что произошла из-за появления групп в собственно математике.

В золотой 1905 год человек, ставший затем величайшим ученым своего времени, опубликовал три статьи, каждая из который произвела переворот в одном из разделов физики. Он не был в то время профессиональным ученым. За плечами у него был университет, но никакой преподавательской должности ему получить не удалось, и работал он в бюро патентов в швейцарском Берне. Звали его, разумеется, Альберт Эйнштейн.

Если какой-то один человек и олицетворяет собой современную физику, то это Эйнштейн. Для многих он олицетворяет также и математический гений, хотя в действительности он был просто квалифицированным математиком, а не первопроходцем уровня Галуа или Киллинга. Творческие способности Эйнштейна лежали не в области создания новой математики, а в феноменально глубокой интуиции относительно структуры физического мира, которую ему удалось выразить, замечательным образом используя существующую математику.

У Эйнштейна были также вкус и склонность к правильной философской точке зрения. Он извлекал радикальные теории из простейших принципов, причем направляло ход его мыслей представление об изяществе, а не всестороннее знание экспериментальных фактов. Важные наблюдения, по его убеждению, всегда можно отфильтровать в несколько ключевых принципов. Дорога к истине пролегает через красоту.

Неисчислимое множество страниц и дело всей жизни многих исследователей посвящены изучению жизни и работ Эйнштейна. Одна-единственная глава меркнет в сравнении с ними в отношении широты и глубины охвата. Но Эйнштейн — ключевая фигура в истории симметрии, потому что именно он более чем кто-либо другой запустил цепочку событий, превративших математику симметрии в фундаментальную физику. Я не думаю, что сам Эйнштейн воспринимал это именно так; для него математика была служанкой физики — временами не слишком послушной. Только позднее, следуя намеченному Эйнштейном пути и разбираясь в запутанных, разобщенных ростках, которые появились на этом пути в результате его пионерских усилий, следующее поколение смогло оценить изящные и глубокие математические концепции, на которых основывалось сделанное им.

Так что нам предстоит кратко обрисовать потрясающий взлет к славе этого патентного служащего невысокого уровня — строго говоря, технического эксперта третьего класса, да к тому же на испытательном сроке. Но поскольку он составляет только часть нашего рассказа, я приведу лишь самые существенные события. Желающим познакомиться с исчерпывающим и беспристрастным описанием жизненного пути Эйнштейна следует обратиться к книге Абрахама Пейса «Господь изощрен…».

Изощрен — да, но, как однажды заметил Эйнштейн, не злонамерен.

Эйнштейн, мало интересовавшийся религией, посвятил свою жизнь обоснованию того принципа, что вселенная постижима и ведет себя математически. Во многих своих наиболее знаменитых высказываниях он упоминает божество, но как символ упорядоченности вселенной, а не как сверхъестественное существо, сующее свой нос в дела людские. Эйнштейн не почитал никакого бога и не практиковал каких-либо религиозных обрядов.

Эйнштейна часто воспринимают как естественного преемника Ньютона. До Эйнштейна ученые уже внесли вклад в развитие ньютоновой «системы мира» (если использовать подзаголовок его «Математических начал натуральной философии»), но Эйнштейн был первым, кто внес в эти представления существенные изменения. Наиболее значительное место из предшествовавших теоретиков принадлежит Джеймсу Клерку Максвеллу, сформулированные которым уравнения электромагнетизма перевели магнитные и электрические явления и в особенности свет в область ньютоновской юрисдикции. Эйнштейн пошел значительно дальше, осуществив несколько решающих изменений. По иронии судьбы изменения, которые привели к пересмотру теории гравитации, возникли как следствие максвелловской теории электромагнитных волн — света и его родственников. Еще большая ирония состояла в том, что фундаментальное свойство этой теории — волновая природа света — сыграло ключевую роль, хотя Ньютон и отрицал, что свет может быть волной. Венцом же является то обстоятельство, что наиболее изящные эксперименты, ныне используемые для демонстрации волновой природы света, выполнил именно Ньютон.

Научный интерес к свету восходит по крайней мере к Аристотелю, который, даром что был философом, задался вопросом такого типа, который должен показаться естественным скорее ученым. Как мы видим? Аристотель предположил, что, когда мы смотрим на некоторый объект, этот объект воздействует на среду между собой и смотрящим глазом. (Мы в наши дни называем эту среду «воздух».) Глаз фиксирует эти изменения в среде, и в результате возникает ощущение зрительного восприятия.

В Средние века объяснение изменили на противоположное. Полагали, что наш глаз испускает некоторые лучи, которые освещают все, на что мы смотрим. Не объект посылает в глаз сигналы, а глаз оставляет следы по всему объекту.

В конце концов было осознано, что мы видим объекты в отраженном свете и что в обычной жизни основным источником света служит Солнце. Эксперименты показали, что свет перемещается по прямым линиям, образуя лучи. Отражение происходит, когда луч отскакивает от некоторой поверхности. Так что Солнце посылает световые лучи на все, что не скрыто в тени какого-либо другого объекта, лучи отовсюду отскакивают, причем некоторые из них попадают в глаз наблюдателя, и глаз получает сигнал с соответствующей стороны, мозг обрабатывает поступающую из глаза информацию, и мы видим то, от чего отразился луч.

Основной вопрос состоял в том, что же такое свет. Свет обладает рядом интригующих свойств. Он не только отражается; он может еще и преломляться — внезапно изменять направление на границе двух различных сред, например воздуха и воды. Именно поэтому палка, опущенная в пруд, выглядит изломанной; на этом же основана работа линзы.

Но еще более интригующим оказывается явление дифракции. В 1664 году ученый и всесторонне образованный человек Роберт Гук, не раз за свою карьеру имевший столкновения с Ньютоном, открыл, что если поместить линзу сверху на плоское зеркало, то при взгляде через линзу видны тонкие концентрические цветные кольца.

Эти кольца известны сейчас как Ньютоновы кольца, потому что Ньютон первым проанализировал их возникновение. Сегодня этот опыт считается ясной демонстрацией того факта, что свет — это волна: кольца возникают в результате интерференции из-за того, что волны при наложении одна на другую или гасят, или не гасят друг друга. Но Ньютон не верил, что свет — волна. Поскольку свет распространяется по прямым линиям, он полагал, что это должен быть поток частиц. Согласно его «Оптике», законченной в 1705 году, «Свет составлен из мельчайших частиц, или корпускул, испускаемых светящимися телами». В рамках теории частиц отражение объяснялось очень просто: частица отскакивает при ударе об (отражающую) поверхность. В этой теории возникли трудности с объяснением преломления, и она, по существу, рассыпалась, когда дело дошло до дифракции.

Размышляя о том, что же может заставить световые лучи изменять направление, Ньютон решил, что корень проблемы должен быть не в свете, а в среде. Это привело его к предположению о

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату