способностями, пониманием и проницательностью математика-человека, ему потребуется какая-никакая концепция «неопровержимой математической истины». Его ранние попытки в формировании суждений, исправленные учителями или обесцененные наблюдением за физическим окружением, в эту категорию никоим образом не попадают. Они относятся к категории «догадок», а догадкам позволяется быть предварительными, пробными и даже ошибочными. Если предполагается, что наш робот должен вести себя как подлинный математик, то даже те ошибки, которые он будет порой совершать, должны быть исправимыми — причем, в принципе, исправимыми именно в соответствии с его собственными внутренними критериями «неопровержимой истинности».
Выше мы уже убедились, что концепцию «неопровержимой истины», которой руководствуется в своей деятельности математик-человек, нельзя сформировать посредством какого бы то ни было познаваемого (человеком) набора механических правил, в справедливости которых этот самый человек может быть целиком и полностью уверен. Если мы полагаем, что наш робот способен достичь уровня математических способностей, достижимого, в принципе, для любого человеческого существа (а то и превзойти этот уровень), то в этом случае его (робота) концепция неопровержимой математической истины также должна представлять собой нечто такое, что невозможно воспроизвести посредством набора механических правил, которые можно полагать обоснованными, — т.е. правил, которые может полагать обоснованными математик-человек или, коли уж на то пошло, математик-робот.
В связи с этими соображениями возникает один весьма важный вопрос: чьи же концепции, восприятие, неопровержимые убеждения следует считать значимыми — наши или роботов? Можно ли полагать, что робот действительно обладает убеждениями или способен что-либо осознавать? Если читатель придерживается точки зрения B, то он, возможно, сочтет такой вопрос несколько неуместным, поскольку сами понятия «осознания» или «убеждения» относятся к описанию процесса мышления и поэтому никоим образом неприменимы к целиком компьютерному роботу. Однако в рамках настоящего рассуждения нет необходимости в том, чтобы наш гипотетический робот и в самом деле обладал какими-то подлинными ментальными качествами, коль скоро мы допускаем, что он способен внешне вести себя в точности подобно математику-человеку — в полном соответствии с самыми строгими формулировками как B, так и A. Нам не нужно, чтобы робот действительно понимал, осознавал или верил; достаточно того, что внешне он проявляет себя в точности так, будто он этими ментальными качествами в полной мере обладает. Подробнее об этом мы поговорим в §3.17.
Точка зрения B не отличается принципиально от A в том, что касается ограничений, налагаемых на возможную манеру поведения робота, однако сторонники B, скорее всего, питают несколько меньшие надежды в отношении тех высот, которых на деле может достичь робот, или вероятности создания вычислительной системы, которую можно было бы полагать способной на эффективное моделирование деятельности мозга человека, оценивающего обоснованность того или иного математического рассуждения. Подобное человеческое восприятие предполагает все же некоторое понимание смысла затронутых математических концепций. Согласно точке зрения A, во всем этом нет ничего, выходящего за рамки некоторого свойства вычисления, связанного с понятием «смысла», тогда как B рассматривает смысл в качестве семантического аспекта мышления и не допускает возможности его описания в чисто вычислительных терминах. В этом мы согласны с точкой зрения B и отнюдь не ожидаем от нашего робота способности действительно ощущать тонкие семантические различия. Таким образом, сторонники B, возможно, менее (нежели сторонники A) склонны предполагать, что какой бы то ни было робот, сконструированный в соответствии с обсуждаемыми здесь принципами, окажется когда-либо способен на демонстрацию тех внешних проявлений человеческого понимания, какие свойственны математикам-людям. Полагаю, отсюда можно сделать вывод (не такой, собственно, и неожиданный), что сторонников B будет существенно легче обратить в приверженцев C, чем сторонников A; впрочем, для нашего дальнейшего исследования разница между A и B существенного значения не имеет.
В качестве заключения отметим, что, хотя истинность математических утверждений нашего робота, получаемых посредством преимущественно восходящей системы вычислительных процедур, носит заведомо предварительный и предположительный характер, следует допустить, что роботу действительно присущ некоторый достаточно «прочный» уровень неопровержимой математической «убежденности», вследствие чего некоторые из его утверждений (которым он будет присваивать некий особый статус — обозначаемый, скажем, знаком ☆) нужно считать неопровержимо истинными — согласно собственным критериям робота. О допустимости ошибочного присвоения роботом статуса ☆ — пусть роботом же и исправимом — мы поговорим в §3.19. А до той поры будем полагать, что всякое ☆-утверждение робота следует рассматривать как безошибочное.
3.13. Механизмы математического поведения робота
Рассмотрим различные механизмы, лежащие в основе процедур, управляющих поведением робота в процессе получения им ☆-утверждений. Некоторые из этих процедур являются по отношению к роботу внутренними — нисходящие внутренние ограничители, встроенные в модель функционирования робота, а также те или иные заранее определенные восходящие процедуры, посредством которых робот улучшает качество своей работы (с тем, чтобы постепенно достичь ☆- уровня). Разумеется, мы полагаем, что все эти процедуры в принципе познаваемы человеком (хотя окончательный результат совокупного действия всех этих разнообразных факторов вполне может оказаться за пределами вычислительных способностей математика-человека). В самом деле, если мы допускаем, что человеческие существа в один прекрасный день сконструируют робота, наделенного подлинным математическим талантом, то следует непременно допустить и то, что человек способен понять внутренние принципы, в соответствии с которыми будет построен этот робот, иначе любое подобное начинание обречено на провал.
Безусловно, мы отдаем себе отчет в том, что создание такого робота вполне может оказаться многоступенчатым процессом: иначе говоря, возможно, что наш робот-математик будет целиком и полностью построен какими-либо роботами «низшего порядка» (которые сами не способны на подлинно математическую деятельность), а эти роботы, в свою очередь, построены другими роботами еще более низкого порядка. Однако запущена в производство вся эта иерархическая цепочка будет все равно человеком, и исходные правила ее построения (по всей видимости, некая комбинация нисходящих и восходящих процедур) будут в любом случае доступны человеческому пониманию.
Существенно важными для процесса развития робота являются и всевозможные внешние факторы, привносимые окружением. Внешний мир и в самом деле может обеспечить нашего робота весьма значительным объемом вводимых данных, поступающих как от учителей-людей (или роботов), так и из наблюдений за естественным физическим окружением. Что до естественных внешних факторов, привносимых «безлюдным» окружением, то «непознаваемыми» их, как правило, не считают. Эти факторы могут быть очень сложными, часто они взаимодействуют между собой, и все же эффективное «виртуально-реальное» моделирование существенных аспектов нашего окружения уже вполне осуществимо (см. §1.20). По-видимому, ничто не мешает модифицировать эти модели таким образом, чтобы робот с их помощью получал все, что ему нужно для развития в смысле внешних естественных факторов, — не будем забывать, что вполне достаточно смоделировать типичное окружение, воспроизводить какое-то реально существующее необходимости нет (см. §§1.7, 1.9).