поддающееся численному моделированию, то этот кто-то тем самым лишает силы главное возражение против C. Ибо единственной разумной причиной усомниться в возможной справедливости точки зрения C можно счесть лишь скептическое отношение к утверждению, что объекты, принадлежащие реальному физическому миру могут вести себя каким-то невычислимым образом. Как только мы признаём, что какой-либо физический процесс может оказаться невычислимым, у нас не остается никакого права отказывать в невычислимости и процессам, протекающим внутри такого физического объекта, как мозг, — равно как и возражать против C. Как бы то ни было, крайне маловероятно, что в безлюдном окружении может обнаружиться нечто такое, что не поддается вычислению столь же фундаментально, как это делают некоторые процессы внутри человеческого тела. (См. также §§1.9 и 2.6, Q2.) Думаю, мало кто всерьез полагает, что среди всего, что имеет хоть какое-то отношение к окружению самообучающегося робота, может оказаться что-либо, принципиально невычислимое.

Впрочем, говоря о «принципиально» вычислимой природе окружения, не следует забывать об одном важном моменте. Вне всякого сомнения, на реальное окружение любого развивающегося живого организма (или некоей изощренной робототехнической системы) оказывают влияние весьма многочисленные и порой невероятно сложные факторы, вследствие чего любое моделирование этого окружения со сколько-нибудь приемлемой точностью вполне может оказаться неосуществимым практически. Динамическое поведение даже относительно простых физических систем бывает порой чрезвычайно сложным, при этом его зависимость от мельчайших нюансов начального состояния может быть настолько критической, что предсказать дальнейшее поведение такой системы решительно невозможно — в качестве примера можно привести ставшую уже притчей во языцех проблему долгосрочного предсказания погоды. Подобные системы называют хаотическими; см. §1.7. (Хаотические системы характеризуются сложным и эффективно непредсказуемым поведением. Однако математически эти системы объяснить вполне возможно; более того, их активное изучение составляет весьма существенную долю современных математических исследований{45}.) Как уже указывалось в §1.7, хаотические системы я также включаю в категорию «вычислительных» (или «алгоритмических»). Для наших целей важно подчеркнуть один существенный момент, касающийся хаотических систем: нет никакой необходимости в воспроизведении того или иного реального хаотического окружения, вполне достаточно воспроизвести окружение типичное. Например, когда мы хотим узнать погоду на завтра, насколько точная информация нам в действительности нужна? Не сгодится ли любое правдоподобное описание?

3.11. Как обучаются роботы?

Учитывая вышесказанное, предлагаю остановиться на том, что на самом деле нас сейчас интересуют отнюдь не проблемы численного моделирования окружения. В принципе, возможностей поработать с окружением у нас будет предостаточно — но только в том случае, если не возникнет никаких трудностей с моделированием внутренних правил самой робототехнической системы. Поэтому перейдем к вопросу о том, как мы видим себе обучение нашего робота. Какие вообще процедуры обучения доступны вычислительному роботу? Возможно, ему будут предварительно заданы некие четкие правила вычислительного характера, как это обычно делается в нынешних системах на основе искусственных нейронных сетей (см. §1.5). Такие системы подразумевают наличие некоторого четко определенного набора вычислительных правил, в соответствии с которыми усиливаются или ослабляются связи между составляющими сеть «нейронами», посредством чего достигается улучшение качества общего функционирования системы согласно критериям (искусственным или естественным), задаваемым внешним окружением. Еще один тип систем обучения образуют так называемые «генетические алгоритмы» — нечто вроде естественного отбора (или, если хотите, «выживания наиболее приспособленных») среди различных алгоритмических процедур, выполняемых на одной вычислительной машине; посредством такого отбора выявляется наиболее эффективный в управлении системой алгоритм.

Следует пояснить, что упомянутые правила (что характерно для восходящей организации вообще) несколько отличаются от стандартных нисходящих вычислительных алгоритмов, действующих в соответствии с известными процедурами для отыскания точных решений математических проблем. Восходящие правила лишь направляют систему к некоему общему улучшению качества ее функционирования. Впрочем, это не мешает им оставаться целиком и полностью алгоритмическими — в смысле воспроизводимости на универсальном компьютере (машине Тьюринга).

В дополнение к четким правилам такого рода, в совокупность средств, с помощью которых наша робототехническая система будет модифицировать свою работу, могут быть включены и некоторые случайные элементы. Возможно, эти случайные составляющие будут вноситься посредством каких-нибудь физических процессов — например, такого квантовомеханического процесса, как распад ядер радиоактивных атомов. На практике при конструировании искусственных вычислительных устройств имеет место тенденция к введению какой-либо вычислительной процедуры, результат вычисления в которой является случайным по существу (иначе такой результат называют псевдослучайным), хотя на деле он полностью определяется детерминистским характером самого вычисления (см. §1.9). С описанным способом тесно связан другой, суть которого заключается в точном указании момента времени, в который производится вызов «случайной» величины, и введении затем этого момента времени в сложную вычислительную процедуру, которая и сама является, по существу, хаотической системой, вследствие чего малейшие изменения во времени дают эффективно непредсказуемые различия в результатах, а сами результаты становятся эффективно случайными. Хотя, строго говоря, наличие случайных компонентов и выводит рассматриваемые процедуры за рамки определения «операции машины Тьюринга», каких-то существенных изменений это за собой не влечет. В том, что касается функционирования нашего робота, случайным входным данным на практике оказываются эквивалентны псевдослучайные, а псевдослучайные входные данные ничуть не противоречат возможностям машины Тьюринга.

«Ну и что, что на практике случайные входные данные не отличаются от псевдослучайных? — заметит дотошный читатель. — Принципиальная-то разница между ними есть». На более раннем этапе нашего исследования (см., в частности, §§3.2 -3.4) нас и в самом деле занимало то, чего математики могут достичь в принципе, вне зависимости от их практических возможностей. Более того, в определенных математических ситуациях проблему можно решить исключительно с помощью действительно случайных входных данных, никакие псевдослучайные заместители для этого не годятся. Подобные ситуации возникают, когда проблема подразумевает наличие некоего «состязательного» элемента, как часто бывает, например, в теории игр и криптографии. В некоторых видах «игр на двоих» оптимальная стратегия для каждого из игроков включает в себя, помимо прочего, и полностью случайную составляющую{46} . Любое сколько-нибудь последовательное пренебрежение одним из игроков необходимым для построения оптимальной стратегии элементом случайности позволяет другому игроку на протяжении достаточно длинной серии игр получить преимущество — по крайней мере, в принципе. Преимущество может быть достигнуто и в том случае, если противнику каким-то образом удалось составить достаточно достоверное представление о природе псевдослучайной (или иной) стратегии, используемой первым игроком вместо требуемой случайной. Аналогичным образом дело обстоит и в криптографии, где надежность кода напрямую зависит от того, насколько случайной является применяемая последовательность цифр. Если эта последовательность генерируется не истинно случайным образом, а посредством какого-либо псевдослучайного процесса, то, как и в случае с играми, этот процесс может в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату