проявить осмотрительность, то ничто не мешает ему изложить требующие принятия аксиомы Q результаты в следующем виде: «Из принятия аксиомы Q следует, что…». Разумеется, математики, несмотря на всю их пресловутую педантичность, проявляют в подобных вопросах должную осмотрительность далеко не всегда. Нельзя отрицать и того, что время от времени им удается допускать и вовсе очевидные ошибки. И все же все эти ошибки — если они допущены по недосмотру, а не следуют из тех или иных непоколебимых принципов — являются исправимыми. (Как упоминалось ранее, возможность действительного применения математиками в качестве основы для своих решений необоснованного алгоритма будет подробно рассмотрена в §3.2 и §3.4. Поскольку эта возможность не противоречит выводу G, она не является предметом настоящего обсуждения.) В данном случае нас не занимают исправимые ошибки, так как к вопросу о принципиальной достижимости тех или иных результатов они никакого отношения не имеют. А. вот возможные неопределенности в действительных взглядах математиков, безусловно, требуют дальнейшего обсуждения, которое и приводится ниже.

Q13. У математиков нет абсолютно определенных убеждений относительно обоснованности или непротиворечивости используемых ими формальных систем — как нет и однозначного ответа на вопрос о том, «пользователями» каких именно формальных систем они себя полагают. Не подвергаются ли их убеждения постепенному размыванию по мере того, как формальные системы все более удаляются от области феноменов, доступных непосредственному интуитивному или экспериментальному восприятию?

И правда, нечасто встретишь математика, способного похвалиться прочно устоявшимися и непоколебимо непротиворечивыми убеждениями, когда речь заходит об основах предмета. Кроме того, по мере накопления опыта математик вполне может изменить свои взгляды относительно того, что считать неопровержимо истинным, если он вообще склонен считать неопровержимо истинным что бы то ни было. Можно ли, например, быть совершенно и полностью уверенным в том, что число 1 отлично от числа 2? Если говорить о некоей абсолютной человеческой уверенности, то не совсем ясно, можно ли подобное понятие как-то однозначно определить. Однако какую-то точку опоры все же выбрать необходимо. Вполне приемлемой точкой опоры может стать принятие в качестве неопровержимо истинной некоторой системы убеждений и принципов, от которой уже можно двигаться в своих рассуждениях дальше. Разумеется, нельзя забывать и о том, что многие математики вовсе не имеют определенного мнения относительно того, что именно можно считать неопровержимо истинным. Таких математиков я попросил бы какую-никакую опору для себя все же выбрать и просто быть готовыми при необходимости впоследствии ее сменить. Как показывает доказательство Гёделя, какую бы позицию математик в этом случае ни занял, ее все равно невозможно полностью уместить в рамки правил любой постижимой формальной системы (а если и возможно, то этот факт невозможно однозначно установить). И дело даже не в том, что та или иная конкретная позиция постоянно изменяется; система убеждений, полностью охватываемая рамками любой (достаточно обширной) формальной системы F, неизбежно должна также простирается и за пределы доступной F области. Любая позиция, среди неопровержимых убеждений которой имеется и убеждение в обоснованности системы F, должна также включать в себя и убежденность в истинности гёделевского предположения[15] G(F). Убежденность в истинности G(F) не представляет собой изменения позиции; эта убежденность уже подразумевается неявно в исходной позиции, допускающей принятие истинности формальной системы F, пусть даже поначалу это и не очевидно.

Безусловно, всегда существует возможность того, что в выводы, получаемые математиком на основании исходных посылок какой-либо конкретной точки зрения, закрадется ошибка. Одна только возможность возникновения такой ошибки — даже если в действительности никакой ошибки допущено не было — может привести к уменьшению степени убежденности, которую математик питает в отношении своих выводов. Однако такое «постепенное размывание» нас, вообще говоря, не занимает. Подобно действительным ошибкам, оно «исправимо». Более того, если доказательство было проведено действительно корректно, то чем дольше его изучаешь, тем, как правило, более убедительными представляются полученные в нем выводы. «Постепенное размывание» математик может испытать на практике, но не в принципе, что возвращает нас к обсуждению возражения Q12.

Таким образом, вопрос перед нами встает здесь следующий: имеет ли место постепенное размывание в принципе, т.е. может ли математик счесть, скажем, обоснованность некоторой формальной системы F неопровержимой, тогда как в обоснованности более сильной системы F* он будет лишь «практически уверен». Этот вопрос не представляется мне сколько-нибудь серьезным, коль скоро, какой бы ни была система F, мы вправе настаивать, чтобы она включала в себя обычные логические правила и арифметические операции. Упомянутый выше математик, который верит в обоснованность системы F, должен также верить в ее непротиворечивость, а следовательно, и в истинность гёделевского высказывания G(F). Таким образом, одни только выводы из формальной системы F не могут охватывать всей совокупности математических убеждений математика, какой бы эта система ни была.

Однако следует ли считать высказывание G (Fнеопровержимо истинным всякий раз, когда мы признаем неопровержимо обоснованной формальную систему F? Полагаю, утвердительный ответ на этот вопрос не должен вызывать никаких сомнений; и это тем более так, если придерживаться в отношении воспроизведения математического доказательства той «принципиальной» позиции, которой мы придерживались до сих пор. Единственная возникающая в этой связи реальная проблема касается деталей фактического кодирования утверждения «система F непротиворечива» в форме арифметического утверждения (Π1-высказывания). Сама по себе базовая идея неопровержимо очевидна: если система F является обоснованной, то она, безусловно, непротиворечива. (Так как если бы она не была непротиворечивой, то среди ее утверждений присутствовало бы утверждение «1 = 2», т.е. система была бы необоснованной.) Что касается деталей этого самого кодирования, то здесь нам вновь предстоит иметь дело с различием между «принципиальным» и «практическим» уровнями. Не составит особого труда убедиться в том, что такое кодирование в принципе возможно (хотя сам процесс убеждения может занять некоторое время), однако убедиться в корректном выполнении того или иного конкретного действительного кодирования — дело совсем другое. Детали кодирования, как правило, бывают в известной степени произвольными и в разных изложениях могут весьма значительно отличаться. Возможно, где-то закрадется незначительная ошибка или просто опечатка, которая, в формальном смысле, должна бы сделать недействительным данное конкретное предназначенное для выражения «G (F)» теоретико-числовое предположение, однако в действительности этого не происходит.

Надеюсь, читатель понимает, что возможность возникновения таких ошибок не существенна, когда речь заходит о том, что мы подразумеваем здесь под принятием предположения G (F) в качестве неопровержимой истины. Я, разумеется, говорю о действительном предположении G(F), а не о возможном случайном предположении, непреднамеренно сформулированном благодаря опечатке или незначительной ошибке. В этой связи мне вспоминается одна история о великом американском физике Ричарде Фейнмане. Фейнман, по-видимому, объяснял одному из студентов какое-то понятие, но оговорился. Когда студент выразил недоумение, Фейнман вспылил: «Не слушайте, что я говорю; слушайте, что я имею в виду[16].

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату